IMGT, the Informatics Framework to Support Effective Collaboration in Complex Environments

Marie-Paule Lefranc

Professor, Montpellier University, CNRS
Senior Member, The University Institute of France
Group leader, Institute of Human Genetics, Montpellier

IMGT®, the international ImMunoGeneTics information system®
http://imgt.cines.fr
Outline

• IMGT® domain of expertise
• IMGT-ONTOLEGY axioms and concepts
• IMGT/V-QUEST, IMGT/JunctionAnalysis, IMGT/3Dstructure-DB
• Conclusions and Perspectives
Vertebrates

Immunoglobulin (IG)

T lymphocyte

B lymphocyte

T cell receptor (TR)

MHC

Trimolecular complex

IMGT® domain: the adaptive immune response
Bone marrow

Blood

Lymph nodes, spleen

V-D-J and V-J rearrangements

Hypermutations, selection

http://imgt.cines.fr
Spacefill 3D representation of an IgG

- VH: V-DOMAIN of the immunoglobulin heavy chain
- VL: V-DOMAIN of the immunoglobulin light chain
- CH1, CH2, CH3: C-DOMAIN of the immunoglobulin heavy chain
- CL: C-DOMAIN of the immunoglobulin light chain

VH corresponds to the V-D-J-REGION (in green (V), orange (D)) of the heavy chain. VL corresponds to the V-J-REGION (in green (V) and yellow (J)) of the light chain.

The Immunoglobulin FactsBook, 2001
Structural domains

IG and TR

V-DOMAIN

C-DOMAIN

MHC

G-DOMAINs

http://imgt.cines.fr
Contribution of the 2 V-DOMAINs to the antigen binding site

Immunoglobulin (IG)

- **V-DOMAIN**
 - **V-J-REGION**
 - **V-D-J-REGION**
- **Heavy chain**
- **Light chain**
- **Membrane IgM**

T cell receptor (TR)

- **V-J-REGION**
- **V-DJ-REGION**
- **Alpha** - **Beta**
- **Gamma** - **Delta**

The Immunoglobulin FactsBook, 2001
Immunoglobulin IgG

Immunoglobulin (IG) synthesis

Genomic DNA (IGH Locus 14q32)

5' V D J C 3'

Rearranged DNA

mRNA

5' 2 x 10^{12} different IG per individual 3'

2 x 10^{12} different IG per individual

Immunoglobulin (IG) synthesis

150
FUNCTIONAL IG GENES

HEAVY CHAIN

V D J C
5' 38 - 46 x 23 x 6 3'

LIGHT CHAIN

V J C
5' 30 - 35 x 5 29 - 33 x 4 - 5 Kappa Lambda 3'

6300 POTENTIAL RECOMBINATIONS

N-DIVERSITY
SOMATIC MUTATIONS

x 1000

ABOUT 6.3 x 10^6 POSSIBILITIES

185 +165 POTENTIAL RECOMBINATIONS

ABOUT 3.5 x 10^5 POSSIBILITIES

2 x 10^12
DIFFERENT ANTIBODIES

IMGT-ONTOLOGY seven axioms:

To share, reuse and represent knowledge in Immunogenetics and Life Sciences

Giudicelli and Lefranc, Bioinformatics 1999
CLASSIFICATION axiom

- group
 - subgroup
 - gene
 - allele
 - locus
 - IGLV
 - IGLV2
 - IGLV2-11
 - IGLV2-11*02
 - human IGL (22q11.2)

« Concepts »

« Instances »

http://imgt.cines.fr
Homo sapiens
IGH locus on chromosome 14
at 14q32.33
IG and TR: 1538 genes and 2523 alleles (human, mouse)
The IMGT-ONTOLOGY main concepts of classification include ‘group’, ‘subgroup’, ‘gene’, ‘allele’.

They allowed to set up the nomenclature for IG and TR genes (V, D, J, C genes).

IMGT gene names were approved by HGNC in 1999 and entered in GDB, LocusLink and Entrez Gene (NCBI).

IMGT/GENE-DB is the international reference database for IG and TR genes (direct links from Entrez Gene NCBI).

DESCRIPTION axiom

PROTOTYPE for a V-GENE

Label 1 Label 2 Relations entre Labels
V-GENE V-EXON
FR3-IMGT CDR3-IMGT
L-PART1 DONOR-SPLICE
V-REGION FR1-IMGT
V-REGION CDR3-IMGT
IMGT/LIGM-DB

114,673 sequences from 210 species

IMGT-ONTOLOGY:

- 277 IMGT labels for sequences
- 285 IMGT labels for 3D structures

SO (Sequence ontology):

- 67 IMGT labels
DESCRIPTION axiom

• The IMGT-ONTOLOGY concepts of description comprise the standardized IMGT labels and relations.

• They have allowed to describe the IG, TR and MHC sequences and 3D structures, whatever the receptor type, the chain type, or the species.

• They are particularly useful to describe IG, TR, and MHC and their complexes (IG/antigen, TR/pMHC).

• It is possible to query the IMGT® databases (IMGT/LIGM-DB for sequences, IMGT/3Dstructure-DB for 3D structures) with IMGT labels.

• Sequence Ontology (SO) includes IMGT labels.
NUMEROTATION axiom

IMGT
Collier de Perles

CDR-IMGT lengths
[8.10.12]

alemtuzumab VH

IMGT Collier de Perles on two layers

CDR-IMGT lengths [8.10.12]

alemtuzumab VH

IMGT Collier de Perles

IMGT Web resources: 10 000 pages HTML

http://imgt.cines.fr
The eleven IMGT amino acid classes according to the physicochemical properties

<table>
<thead>
<tr>
<th>Volume classes</th>
<th>'Hydrophobic' classes</th>
<th>'Hydropathy' classes</th>
<th>Hydrophilic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in Å³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very large</td>
<td>189-228</td>
<td>F</td>
<td>K</td>
</tr>
<tr>
<td>Large</td>
<td>162-174</td>
<td>W, L</td>
<td>R</td>
</tr>
<tr>
<td>Medium</td>
<td>138-154</td>
<td>V, M</td>
<td>H, E</td>
</tr>
<tr>
<td>Small</td>
<td>108-117</td>
<td>C</td>
<td>D, Q</td>
</tr>
<tr>
<td>Very small</td>
<td>60-90</td>
<td>A</td>
<td>N</td>
</tr>
</tbody>
</table>

- **Aliphatic**
- **Sulfur**
- **Hydroxy**
- **Basic**
- **Acidic**
- **Amide**

Pommié et al. J. Mol Recognit. 17, 17-32, 2004
IMGT Collier de Perles amino acid profile

CDR-IMGT lengths
[8.10.12]

alemtuzumab VH

Pommié et al. J. Mol Recognit. 17, 17-32, 2004
Towards «Potential immunogenicity evaluation »

Comparison with human germline genes:

- Percentage of identity of the V-REGION
- Percentage of identity of the 4 FR-IMGT (91 VH positions, 89 V-KAPPA positions)
- Number of amino acids with IMGT class change in the 4 FR-IMGT ('class' refers to the 11 IMGT physicochemical properties aa classes)

<table>
<thead>
<tr>
<th>Antibody</th>
<th>IGHV Gene</th>
<th>Percentage</th>
<th>Identity (%)</th>
<th>Class Change</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>alemtuzumab</td>
<td>IGHV4-59*01</td>
<td>73 %</td>
<td>84.61 % (77/91)</td>
<td>2/91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IGKV1-33*01</td>
<td>86.32 %</td>
<td>97.75 % (87/89)</td>
<td>1/89</td>
<td></td>
</tr>
<tr>
<td>bevacizumab</td>
<td>IGHV7-4-1*02</td>
<td>72.40 %</td>
<td>74.72 % (68/91)</td>
<td>1/91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IGKV1-33*01</td>
<td>87.40 %</td>
<td>92.13 % (82/89)</td>
<td>2/89</td>
<td></td>
</tr>
<tr>
<td>trastuzumab</td>
<td>IGHV3-66*01</td>
<td>81.63 %</td>
<td>90.10 % (82/91)</td>
<td>0/91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IGKV1-39*01</td>
<td>86.32 %</td>
<td>93.25 % (83/89)</td>
<td>1/89</td>
<td></td>
</tr>
</tbody>
</table>
NUMEROTATION axiom

• The IMGT-ONTOLOGY concepts of numerotation include IMGT unique numbering and IMGT Collier de Perles for V-DOMAIN (IG and TR).

• They have been extended to the C-DOMAIN (IG and TR) and G-DOMAIN (MHC).

• They have allowed to bridge the gap between sequences and 3D structures in IMGT/3Dstructure-DB.

• They are used for mutations, polymorphisms, CDR-IMGT lengths, contact analysis, potential immunogenicity evaluation and paratope definition.

• WHO-INN programme requires the CDR-IMGT lengths for antibody.
IMGT/V-QUEST: analysis of IG and TR sequences

WELCOME!

to the IMGT/V-QUEST Search page

THE
INTERNATIONAL
IMMUNOGENETICS
INFORMATION SYSTEM®

You are in the new IMGT/V-QUEST, upgraded for multiple sequences and with new functionalities. NEW!

Analyse your Immunoglobulin nucleotide sequences

- Human
- Mouse
- Chondrichthyes

- Teleostei
 - Atlantic cod
 - Channel catfish
 - Rainbow trout
- Sheep

Analyse your T cell Receptor nucleotide sequences

- Human
- Mouse
- Non-human primates
IMGT/V-QUEST: analysis of IG and TR sequences

Analyse your Immunoglobulin sequences

Your selection: Human

Your sequences are compared to the Human IG set from the IMGT/V-QUEST reference directory sets

Nucleotide sequences

Enter your sequence(s) in FASTA format (FASTA format is required):

>AY393054
gtggttttctttttcattttatgaaggtcgccgagtgctgtgggaccagggcttggtacagccagggcgggtccctgagactccctgtgcagctcttggattgacctttttggttatctttagctgtgctgccaccgctcaggggaaagggactggaatggtagtcataaatagacaggtgggaacagaaatatttggtatgataagggcagattatcatcactccctgagagattttccaaaaggtctgctattttgcaatgtgacccggagacacagcatatattctgaatgactgtgcttatctaccagggacatcttccgagctgtgggccctggaccctcaagggctcttgggggccacagcgccttggtctggttcctggtcaaggaactacccc

Or give the path access to a local file containing your sequence(s) in FASTA format (FASTA format is required):

Start | Clear the form

Analysis by batches of up to 50 sequences in a single run

http://imgt.cines.fr
IMGT/V-QUEST: analysis of IG and TR sequences

Selection of parameters for the results

Display type: HTML
Nb of nucleotides per line in alignment: 60

A. Detailed view
1. Alignment for V-GENE
2. Alignment for D-GENE
3. Alignment for J-GENE
4. Results of IMGT/JunctionAnalysis
 - with full list of eligible D-GENE
 - without list of eligible D-GENE
5. Sequence of the JUNCTION CDR1 and CDR2
6. V-REGION alignment according to the IMGT numbering
7. V-REGION translation
8. V-REGION mutation table
9. V-REGION mutation statistics
10. V-REGION mutation hot spots
11. IMGT Collier de Perles
 - Links to IMGT Collier de Perles
 - IMGT Collier de Perles (PNG format, slow)
 - no IMGT Collier de Perles
12. Sequences of (V-J or V-D-J) REGION with gaps in FASTA
Access to IMGT/PhyloGene for V-REGION
13. Annotations by IMGT/Automat

B. Synthesis view
1. Alignment for V-GENE
2. V-REGION alignment according to the IMGT numbering
3. V-REGION translation
4. V-REGION protein display
5. V-REGION protein display (with color)
6. V-REGION protein display (mutations displayed)
7. V-REGION most frequently occurring AA
8. Results of IMGT/JunctionAnalysis

Advanced parameters
Selection of IMGT reference directory set
- F:GRF in frame P
- With all alleles
- With allele *01 only

Selection of parameters for IMGT/JunctionAnalysis
- Nb of D-GENE in IGJ JUNCTIONs (default is 1)
- Number of accepted mutations
 - default in 3V-REGION
 - default in D-REGION
 - default in 5U-REGION

More options for Detailed view
- Nb of nucleotides to exclude in 5' of the V-REGION for the evaluation of the nb of mutations (in results 8 and 9)
- Nb of nucleotides to add (or exclude) in 3' of the V-REGION for the evaluation of the alignment score (in result 1)
3. V-REGION translation

```
GI  5  10  15
E  Q  L  V  Q  S  C  A  E  K  K  P
X56368 IGHV5-51*03
gag gta gta gta gta gta gga 
seq1 --- --- -gc --- --- --- --- ... --- --- --- ---
--- --- --- --- --- --- --- --- ... --- --- --- ---
--- --- --- --- --- --- --- --- ... --- --- --- ---
seq3 --- -g- --- --- -a- --- --- --- ... -e --- --- --- ---
--- --- --- --- --- --- --- --- ... --- --- --- ---
seq4 --- --- --- --- --- --- --- --- ... --- --- --- ---
--- --- --- --- --- --- --- --- ... --- --- --- ---
--- --- --- --- --- --- --- --- ... --- --- --- ---
seq5 --- -g- --- --- -a- --- --- --- ... -e --- --- --- ---
--- --- --- --- --- --- --- --- ... --- --- --- ---
--- --- --- --- --- --- --- --- ... --- --- --- ---

-------------------------- FR1 - IMGT
20  25  30
G  E  S  L  K  I  S  C  K  G  S  G  Y  S  F
X56368 IGHV5-51*03
gyy gag tct gty ayt tcc tgt ayt gtt tct gga tac aqc tgt
seq1 --- --- --- --- --- --- --- --- --- --- --- ---
seq2 --- --- --- --- --- --- --- --- --- --- --- ---
seq3 --- --- --- --- --- --- --- --- --- --- --- ---
seq4 --- --- --- --- --- --- --- --- --- --- --- ---
seq5 --- --- --- --- --- --- --- --- --- --- --- ---
seq6 --- --- --- --- --- --- --- --- --- --- --- ---
```
IMGT/V-QUEST: advanced parameters

Selection of parameters for the results

Display type: HTML

- **Nb of nucleotides per line in alignment:** 60

A. Detailed view

1. **Alignment for V-GENE**
2. **Alignment for D-GENE**
3. **Alignment for J-GENE**
4. **Results of IMGT/JunctionAnalysis**
 - with full list of eligible D-GENEs
 - without list of eligible D-GENEs
5. **Sequence of the JUNCTION (nt and AA)**
6. **V-REGION alignment according to the IMGT numbering**
7. **V-REGION translation**
8. **V-REGION mutation table**
9. **V-REGION mutation statistics**
10. **V-REGION mutation hot spots**
11. **IMGT Collier de Perles**
 - Links to IMGT Collier de Perles
 - IMGT Collier de Perles (P16 format, slow)
 - no IMGT Collier de Perles
12. **Sequences of V-, D- and V(D)J-REGION (nt and AA) with gaps in FASTA**
 - Access to IMGT/Phylotree for V-REGION (nt)
13. **Annotations by IMGTautomat**

B. Synthesis view

1. **Alignment for V-GENE**
2. **V-REGION alignment according to the IMGT numbering**
3. **V-REGION translation**
4. **V-REGION protein display**
5. **V-REGION protein display with color**
6. **V-REGION protein display (mutations displayed)**
7. **V-REGION most frequently occurring AA**
8. **Results of IMGT/JunctionAnalysis**

Advanced parameters

Selection of IMGT reference directory set: FORF+ in frame P

- **With all alleles**
- **With allele *01 only**

Selection of parameters for IMGT/JunctionAnalysis

- **Nb of D-GENE in VH JUNCTIONs (default 1)** Default: 5
- **Number of accepted mutations**
 - in 3V-REGION: Default
 - in D-REGION: Default
 - in 5V-REGION: Default

More options for Detailed view

- **Nb of nucleotides to exclude in 5’ of the V-REGION for the evaluation of the nb of mutations (results 8 and 9)** Default
- **Nb of nucleotides to add (or exclude) in 3’ of the V-REGION for the evaluation of the alignment score (result 1)** Default
V-DOMAINs: VH and V-KAPPA

VH
V-D-J junction

V-KAPPA
V-J junction

Mouse (Mus musculus) E5.2Fv

CDR3-IMGT = Complementarity determining region (105-117)
V-J junction (104-118)
V-D-J junction (104-118)
Immunoglobulin V-D-J generation
of sequence diversity

3′V-REGION N-REGION D-REGION N-REGION 5′J-REGION

tgtgcaaaaaga tac agcatatttggt gtggactgtat tcc gat acaactgttccg actccctgg

JUNCTION

C A P Y R G D T Y D Y S W
tgt gcg cca tac cgg ggt gac act tat gat tac tcc tgg

http://imgt.cines.fr
IMGT/JunctionAnalysis Results

Locus
- IGH

Species
- Homo sapiens

IMGT repertoire link
- Locus representation

Maximum number of mutations:
- V-REGION: 2
- D-REGION: 4
- J-REGION: 2

Deletion criterion:
- Using patterns

Best D gene choice for a same score:
- Less mutations

Description of the JUNCTIONs

Click on mutated (underscored) nucleotid to see the original one.

<table>
<thead>
<tr>
<th>Input</th>
<th>V name</th>
<th>V-REGION</th>
<th>D-REGION</th>
<th>N1</th>
<th>N2</th>
<th>J-REGION</th>
<th>J name</th>
<th>D name</th>
<th>Vmut</th>
<th>Dmut</th>
<th>Jmut</th>
<th>Mgc</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Z70256</td>
<td>IGTV2-16*01</td>
<td>tgctggaga</td>
<td>tcggctggc</td>
<td>ttgta</td>
<td>ttgta</td>
<td>ctggctgg</td>
<td>IGKV4-01</td>
<td>IGHH-15*01</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>#2</td>
<td>Z70257</td>
<td>IGTV3-17*02</td>
<td>gctggaga</td>
<td>tcggctggc</td>
<td>ctgta</td>
<td>ctgta</td>
<td>ctggctgg</td>
<td>IGKV4-01</td>
<td>IGHH-12*01</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>#3</td>
<td>Z70806</td>
<td>IGTV4-11*03</td>
<td>c</td>
<td>gactcagg</td>
<td>gactcagg</td>
<td>gactcagg</td>
<td>gactcagg</td>
<td>IGKV3-01</td>
<td>IGHH-17*01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#4</td>
<td>Z70808</td>
<td>IGTV4-19*05</td>
<td>cagacta</td>
<td>cagacta</td>
<td>cagacta</td>
<td>cagacta</td>
<td>cagacta</td>
<td>IGKV4-01</td>
<td>IGHH-12*01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#5</td>
<td>Z70810</td>
<td>IGTV4-19*05</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>IGKV4-01</td>
<td>IGHH-12*01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#6</td>
<td>Z70811</td>
<td>IGTV4-14*09</td>
<td>gcggcggag</td>
<td>tcggctggc</td>
<td>gcgcgcgc</td>
<td>gcgcgcgc</td>
<td>gcgcgcgc</td>
<td>IGKV4-01</td>
<td>IGHH-17*01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#7</td>
<td>Z70813</td>
<td>IGTV4-19*05</td>
<td>cagacta</td>
<td>cagacta</td>
<td>cagacta</td>
<td>cagacta</td>
<td>cagacta</td>
<td>IGKV4-01</td>
<td>IGHH-12*01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#8</td>
<td>Z70814</td>
<td>IGTV4-19*01</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>IGKV3-01</td>
<td>IGHH-16*01</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>#9</td>
<td>Z70815</td>
<td>IGTV4-19*01</td>
<td>gcggtggc</td>
<td>tcggctggc</td>
<td>gcggtggc</td>
<td>gcggtggc</td>
<td>gcggtggc</td>
<td>IGKV4-01</td>
<td>IGHH-12*01</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>#10</td>
<td>Z70816</td>
<td>IGTV4-14*01</td>
<td>cgg</td>
<td>cgg</td>
<td>cgg</td>
<td>cgg</td>
<td>cgg</td>
<td>IGKV4-01</td>
<td>IGHH-16*01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#11</td>
<td>Z70820</td>
<td>IGTV4-10*01</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>IGKV4-01</td>
<td>IGHH-16*01</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>#12</td>
<td>Z70821</td>
<td>IGTV4-19*01</td>
<td>cagacta</td>
<td>cagacta</td>
<td>cagacta</td>
<td>cagacta</td>
<td>cagacta</td>
<td>IGKV4-01</td>
<td>IGHH-16*01</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>#13</td>
<td>Z70822</td>
<td>IGTV4-19*01</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>tcggctggc</td>
<td>IGKV4-01</td>
<td>IGHH-16*01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

http://imgt.cines.fr
JUNCTION alignments with translation and IMGT AA classes

Click on mutated (underlined) amino acid to see the original one:

<table>
<thead>
<tr>
<th>104</th>
<th>105</th>
<th>106</th>
<th>107</th>
<th>108</th>
<th>109</th>
<th>110</th>
<th>111</th>
<th>111.1</th>
<th>111.2</th>
<th>111.3</th>
<th>112</th>
<th>112.1</th>
<th>112.2</th>
<th>112.3</th>
<th>113</th>
<th>114</th>
<th>115</th>
<th>116</th>
<th>117</th>
<th>118</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>S</td>
<td>P</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>S</td>
<td>A</td>
<td>Y</td>
<td>Y</td>
<td>H</td>
<td>E</td>
<td>H</td>
<td>F</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#1 seq1

tct tgt acc gcc gtc gct tat tgc gac gca gac gcc tcc cag cag cag tgg

| C | Y | K | P | T | B | D | D | D | G | H | P | A | E | Y | F | Q | Q | V | |

#2 seq2

tct tgt acc gcc gtc gat gat gat gcc gac gac gca tgc tcc cag cag tgg

| C | Y | G | G | S | A | Y | | | | | | | | | | | | | |

#3 seq3

tct tgt acc gcc gtt ccc tat gat gat gcc tgc gac gca gcc gcc tcc cag cag tgg

| C | Y | G | G | S | A | Y | | | | | | | | | | | | | |

#4 seq4

tct tgt acc gcc gtt ccc tat gat gat gcc tgc gac gca gcc gcc tcc cag cag tgg

| C | A | K | Q | B | P | P | E | Y | S | S | A | Y | H | D | G | W | F | D | P | V |

#5 seq5

tct gac aca aca aac ccc ccc gcc tat gct gac gca tat gat gat gcc gcc tcc cag cag cag tgg

| C | A | F | E | M | Y | S | S | G | G | S | Y | Y | P | P | D | A | F | E | L | V |

#6 seq6

tct gac aca gac aty ctc tat gct tgg ggc ggt tat gcc gcc tcc ccc gtt gct gcc tgg cgg cgg cgg tgg

| C | A | F | Q | B | P | P | E | Y | S | S | A | Y | H | D | G | W | F | D | P | V |

#7 seq7

tct gac aca gac aty ctc tat gct tgg ggc ggt tat gcc gcc tcc ccc gtt gct gcc tgg cgg cgg cgg tgg

| C | A | F | Q | B | P | P | E | Y | S | S | A | Y | H | D | G | W | F | D | P | V |

#8 seq8

tct gac aca gac aty ctc tat gct tgg ggc ggt tat gcc gcc tcc ccc gtt gct gcc tgg cgg cgg cgg tgg

| C | A | F | Q | B | P | P | E | Y | S | S | A | Y | H | D | G | W | F | D | P | V |

#9 seq9

tct gac aca gac aty ctc tat gct tgg ggc ggt tat gcc gcc tcc ccc gtt gct gcc tgg cgg cgg cgg tgg

Analysis of the 3D structures

THANK YOU for using IMGT/3Dstructure-DB

IMGT/3Dstructure-DB card for: 1ce1

<table>
<thead>
<tr>
<th>IMGT protein name</th>
<th>IMGT receptor type</th>
<th>IMGT receptor description</th>
<th>Ligand(s)</th>
<th>Species</th>
<th>CC</th>
<th>Chain ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMPATH-1H, alemtuzumab, MABCAMPATH@</td>
<td>lg</td>
<td>FAB-GAMMA-1_KAPPA</td>
<td>Humanized</td>
<td>1</td>
<td>1ce1_H, 1ce1_L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peptide</td>
<td>CD52 (synthetic peptide)</td>
<td>Synthetic</td>
<td>1</td>
<td>1ce1_P</td>
<td></td>
</tr>
</tbody>
</table>

Experimental technique: X-ray diffraction
Resolution (in angstrom): 1.90
PDB release date: 25-JUN-99

Contact analysis:

IMGT/3Dstructure-DB Domain pair contacts (overview) of 1ce1

Atom contact types
- Non covalent
- Covalent
- (BB) Backbone/backbone
Access to atomic pair contacts in IMGT/3Dstructure-DB

Click on residue in IMGT Collier de Perles (or in amino acid sequence)

http://imgt.cines.fr
Atomic pair contacts in IMGT/3Dstructure-DB

41V - TRP (W)

chain : 1u8k_B

<table>
<thead>
<tr>
<th>IMGT Num</th>
<th>Code 1C</th>
<th>Code 3C</th>
<th>Chain</th>
<th>Domain</th>
<th>Tot</th>
<th>NCo</th>
<th>Pol</th>
<th>HB</th>
<th>NPol</th>
<th>Cov</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td>6V1</td>
<td>E</td>
<td>GLU</td>
<td>1u8k_B</td>
<td>VH</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>21V1</td>
<td>L</td>
<td>LEU</td>
<td>1u8k_B</td>
<td>VH</td>
<td>17</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>22V1</td>
<td>T</td>
<td>THR</td>
<td>1u8k_B</td>
<td>VH</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>23V1</td>
<td>C</td>
<td>CYS</td>
<td>1u8k_B</td>
<td>VH</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>39V1</td>
<td>V</td>
<td>VAL</td>
<td>1u8k_B</td>
<td>VH</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>43V1</td>
<td>R</td>
<td>ARG</td>
<td>1u8k_B</td>
<td>VH</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>51V1</td>
<td>E</td>
<td>GLU</td>
<td>1u8k_B</td>
<td>VH</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>52V1</td>
<td>W</td>
<td>TRP</td>
<td>1u8k_B</td>
<td>VH</td>
<td>11</td>
<td>11</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>53V1</td>
<td>L</td>
<td>LEU</td>
<td>1u8k_B</td>
<td>VH</td>
<td>15</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>54V1</td>
<td>A</td>
<td>ALA</td>
<td>1u8k_B</td>
<td>VH</td>
<td>18</td>
<td>18</td>
<td>4</td>
<td>2</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>55V1</td>
<td>I</td>
<td>ILE</td>
<td>1u8k_B</td>
<td>VH</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>78V1</td>
<td>I</td>
<td>ILE</td>
<td>1u8k_B</td>
<td>VH</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>87V1</td>
<td>V</td>
<td>VAL</td>
<td>1u8k_B</td>
<td>VH</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>88V1</td>
<td>V</td>
<td>VAL</td>
<td>1u8k_B</td>
<td>VH</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>89V1</td>
<td>L</td>
<td>LEU</td>
<td>1u8k_B</td>
<td>VH</td>
<td>33</td>
<td>33</td>
<td>1</td>
<td>0</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>102V1</td>
<td>Y</td>
<td>TYR</td>
<td>1u8k_B</td>
<td>VH</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>103V1</td>
<td>F</td>
<td>PHE</td>
<td>1u8k_B</td>
<td>VH</td>
<td>18</td>
<td>18</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>104V1</td>
<td>C</td>
<td>CYS</td>
<td>1u8k_B</td>
<td>VH</td>
<td>26</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Info</td>
<td>105V1</td>
<td>A</td>
<td>ALA</td>
<td>1u8k_B</td>
<td>VH</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Tot**: Total number of atomic pair contacts
- **NCo**: Number of non covalent atomic pair contacts
- **Pol**: Number of polar atomic pair contacts
- **HB**: Number of hydrogen bonds
- **NPol**: Number of non polar atomic pair contacts
- **Cov**: Number of covalent links (other than chain covalent links)
- **SS**: Number of disulfide bridges
Hydrogen bonds (IMGT Collier de Perles on 2 layers)

Collier de Perles: HUMAN IGHV V-DOMAIN from B12 (PDB: 1hzh_H)

[8.8.20]

Contacts VH-(Ligand), V-KAPPA-(Ligand)

<table>
<thead>
<tr>
<th>IMGT molecule name</th>
<th>IMGT description</th>
<th>Chain ID</th>
<th>IMGT chain description</th>
<th>Domain number</th>
<th>IMGT domain description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMPATH-1H, alemtuzumab, MABCAMPATH®</td>
<td>FAB-GAMMA-1_KAPPA</td>
<td>ice1_H</td>
<td>VH-CH1</td>
<td>[D1]</td>
<td>VH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ice1_L</td>
<td>L-KAPPA</td>
<td>[D2]</td>
<td>CH1</td>
</tr>
<tr>
<td>CDS2 (synthetic peptide)</td>
<td>Peptide</td>
<td>ice1_P</td>
<td>Peptide</td>
<td>[D1]</td>
<td>V-KAPPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[D2]</td>
<td>C-KAPPA</td>
</tr>
</tbody>
</table>

Contact Table

<table>
<thead>
<tr>
<th>DomPair</th>
<th>Unit 1 Domain</th>
<th>Unit 1 Chain</th>
<th>Unit 2 Domain</th>
<th>Unit 2 Chain</th>
<th>Residue contacts</th>
<th>Number of residues</th>
<th>Atom contact types</th>
</tr>
</thead>
<tbody>
<tr>
<td>DomPair</td>
<td>VH</td>
<td>ice1_H</td>
<td>CH1</td>
<td>ice1_H</td>
<td>19</td>
<td>17 8 9</td>
<td>125 9 1</td>
</tr>
<tr>
<td>DomPair</td>
<td>VH</td>
<td>ice1_H</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>63</td>
<td>45 24 21</td>
<td>532 61 6</td>
</tr>
<tr>
<td>DomPair</td>
<td>(Ligand)</td>
<td>ice1_P</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>25</td>
<td>19 12 7</td>
<td>216 40 9</td>
</tr>
<tr>
<td>DomPair</td>
<td>CH1</td>
<td>ice1_H</td>
<td>VH</td>
<td>ice1_H</td>
<td>19</td>
<td>17 9 8</td>
<td>125 9 1</td>
</tr>
<tr>
<td>DomPair</td>
<td>CH1</td>
<td>ice1_H</td>
<td>C-KAPPA</td>
<td>ice1_L</td>
<td>68</td>
<td>58 26 30</td>
<td>498 40 6</td>
</tr>
<tr>
<td>DomPair</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>VH</td>
<td>ice1_H</td>
<td>63</td>
<td>45 21 24</td>
<td>532 61 6</td>
</tr>
<tr>
<td>DomPair</td>
<td>C-KAPPA</td>
<td>ice1_L</td>
<td>C-KAPPA</td>
<td>ice1_L</td>
<td>18</td>
<td>18 8 10</td>
<td>137 19 2</td>
</tr>
<tr>
<td>DomPair</td>
<td>(Ligand)</td>
<td>ice1_P</td>
<td>(Ligand)</td>
<td>ice1_P</td>
<td>16</td>
<td>14 7 7</td>
<td>171 37 5</td>
</tr>
<tr>
<td>DomPair</td>
<td>C-KAPPA</td>
<td>ice1_L</td>
<td>CH1</td>
<td>ice1_H</td>
<td>68</td>
<td>58 30 28</td>
<td>498 40 6</td>
</tr>
<tr>
<td>DomPair</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>VH</td>
<td>ice1_H</td>
<td>18</td>
<td>18 10 8</td>
<td>137 19 2</td>
</tr>
</tbody>
</table>
Contacts VH-(Ligand)

Contacts of VH 1ce1_H with (Ligand) 1ce1_P

Atom contact types
- Non covalent
- Polar
- Hydrogen bond
- Non polar

Atom contact categories
- Non covalent
- Covalent
- Disulfide
- Backbone/backbone
- Side chain/side chain
- Backbone/side chain
- Side chain/backbone

Summary:

<table>
<thead>
<tr>
<th>Residue contacts</th>
<th>Number of residues</th>
<th>Atom contact types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>From 1</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>19</td>
</tr>
</tbody>
</table>

List of the Residue@Position pair contacts:
Click 'R@P' for IMGT Residue@Position cards

<table>
<thead>
<tr>
<th>Order</th>
<th>IMGT Num</th>
<th>Residue</th>
<th>Domain</th>
<th>Chain</th>
<th>Order</th>
<th>IMGT Num</th>
<th>Residue</th>
<th>Domain</th>
<th>Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>38</td>
<td>TYR</td>
<td>Y</td>
<td>VH</td>
<td></td>
<td>2</td>
<td>THR</td>
<td>T</td>
<td>1ce1_P</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>TYR</td>
<td>Y</td>
<td>VH</td>
<td></td>
<td>7</td>
<td>ALA</td>
<td>A</td>
<td>1ce1_P</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>TYR</td>
<td>Y</td>
<td>VH</td>
<td></td>
<td>8</td>
<td>ASP</td>
<td>D</td>
<td>1ce1_P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>
Contacts VH-(Ligand)

<table>
<thead>
<tr>
<th>IMGT Num</th>
<th>Residue</th>
<th>Domain</th>
<th>Chain</th>
<th>IMGT Num</th>
<th>Residue</th>
<th>Domain</th>
<th>Chain</th>
<th>Total</th>
<th>Polar</th>
<th>Hydrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>TYR</td>
<td>Y</td>
<td>ice1_H</td>
<td>2</td>
<td>THR</td>
<td>T</td>
<td>ice1_P</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>88</td>
<td>TYR</td>
<td>Y</td>
<td>ice1_H</td>
<td>7</td>
<td>ALA</td>
<td>A</td>
<td>ice1_P</td>
<td>13</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>88</td>
<td>TYR</td>
<td>Y</td>
<td>ice1_H</td>
<td>8</td>
<td>ASP</td>
<td>D</td>
<td>ice1_P</td>
<td>14</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>PHE</td>
<td>F</td>
<td>ice1_H</td>
<td>6</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>PHE</td>
<td>F</td>
<td>ice1_H</td>
<td>7</td>
<td>ALA</td>
<td>A</td>
<td>ice1_P</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>PHE</td>
<td>F</td>
<td>ice1_H</td>
<td>8</td>
<td>ASP</td>
<td>D</td>
<td>ice1_P</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>ARG</td>
<td>R</td>
<td>ice1_H</td>
<td>7</td>
<td>ALA</td>
<td>A</td>
<td>ice1_P</td>
<td>9</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>57</td>
<td>ARG</td>
<td>R</td>
<td>ice1_H</td>
<td>8</td>
<td>ASP</td>
<td>D</td>
<td>ice1_P</td>
<td>20</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>LYS</td>
<td>K</td>
<td>ice1_H</td>
<td>8</td>
<td>ASP</td>
<td>D</td>
<td>ice1_P</td>
<td>11</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>GLU</td>
<td>E</td>
<td>ice1_H</td>
<td>7</td>
<td>ALA</td>
<td>A</td>
<td>ice1_P</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>107</td>
<td>GLU</td>
<td>E</td>
<td>ice1_H</td>
<td>2</td>
<td>THR</td>
<td>T</td>
<td>ice1_P</td>
<td>13</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>107</td>
<td>GLU</td>
<td>E</td>
<td>ice1_H</td>
<td>4</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>107</td>
<td>GLU</td>
<td>E</td>
<td>ice1_H</td>
<td>7</td>
<td>ALA</td>
<td>A</td>
<td>ice1_P</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>108</td>
<td>GLY</td>
<td>G</td>
<td>ice1_H</td>
<td>1</td>
<td>GLY</td>
<td>G</td>
<td>ice1_P</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>108</td>
<td>GLY</td>
<td>G</td>
<td>ice1_H</td>
<td>2</td>
<td>THR</td>
<td>T</td>
<td>ice1_P</td>
<td>9</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>109</td>
<td>HIS</td>
<td>H</td>
<td>ice1_H</td>
<td>1</td>
<td>GLY</td>
<td>G</td>
<td>ice1_P</td>
<td>24</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>109</td>
<td>HIS</td>
<td>H</td>
<td>ice1_H</td>
<td>2</td>
<td>THR</td>
<td>T</td>
<td>ice1_P</td>
<td>21</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>109</td>
<td>HIS</td>
<td>H</td>
<td>ice1_H</td>
<td>3</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>9</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>THR</td>
<td>T</td>
<td>ice1_H</td>
<td>1</td>
<td>GLY</td>
<td>G</td>
<td>ice1_P</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>THR</td>
<td>T</td>
<td>ice1_H</td>
<td>3</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>11</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>112</td>
<td>ALA</td>
<td>A</td>
<td>ice1_H</td>
<td>3</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>113</td>
<td>ALA</td>
<td>A</td>
<td>ice1_H</td>
<td>2</td>
<td>THR</td>
<td>T</td>
<td>ice1_P</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>113</td>
<td>ALA</td>
<td>A</td>
<td>ice1_H</td>
<td>3</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>113</td>
<td>ALA</td>
<td>A</td>
<td>ice1_H</td>
<td>4</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>114</td>
<td>PRO</td>
<td>P</td>
<td>ice1_H</td>
<td>4</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Contacts V-KAPPA-(Ligand)

<table>
<thead>
<tr>
<th>Residue contacts</th>
<th>Number of residues</th>
<th>Atom contact types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total From 1 From 2</td>
<td>Total Polar Hydrogen</td>
</tr>
<tr>
<td>16</td>
<td>14 7</td>
<td>171 37 5</td>
</tr>
</tbody>
</table>

List of the Residue@Position pair contacts:

Click 'R@P' for IMGT Residue@Position cards

<table>
<thead>
<tr>
<th>Order</th>
<th>IMGT Num</th>
<th>Residue</th>
<th>Domain</th>
<th>Chain</th>
<th>Order</th>
<th>IMGT Num</th>
<th>Residue</th>
<th>Domain</th>
<th>Chain</th>
<th>Atom contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>R@P</td>
<td>38</td>
<td>TYR</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>3</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>1</td>
</tr>
<tr>
<td>R@P</td>
<td>38</td>
<td>TYR</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>5</td>
<td>PRO</td>
<td>P</td>
<td>ice1_P</td>
<td>21</td>
</tr>
<tr>
<td>R@P</td>
<td>53</td>
<td>ASN</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>3</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>3</td>
</tr>
<tr>
<td>R@P</td>
<td>107</td>
<td>HIS</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>4</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>20</td>
</tr>
<tr>
<td>R@P</td>
<td>107</td>
<td>HIS</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>5</td>
<td>PRO</td>
<td>P</td>
<td>ice1_P</td>
<td>12</td>
</tr>
<tr>
<td>R@P</td>
<td>107</td>
<td>HIS</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>6</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>14</td>
</tr>
<tr>
<td>R@P</td>
<td>108</td>
<td>ILE</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>5</td>
<td>PRO</td>
<td>P</td>
<td>ice1_P</td>
<td>12</td>
</tr>
<tr>
<td>R@P</td>
<td>108</td>
<td>ILE</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>6</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>12</td>
</tr>
<tr>
<td>R@P</td>
<td>109</td>
<td>SER</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>6</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>11</td>
</tr>
<tr>
<td>R@P</td>
<td>114</td>
<td>ARG</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>6</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>18</td>
</tr>
<tr>
<td>R@P</td>
<td>114</td>
<td>ARG</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>7</td>
<td>ALA</td>
<td>A</td>
<td>ice1_P</td>
<td>4</td>
</tr>
<tr>
<td>R@P</td>
<td>114</td>
<td>ARG</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>8</td>
<td>ASP</td>
<td>D</td>
<td>ice1_P</td>
<td>6</td>
</tr>
<tr>
<td>R@P</td>
<td>114</td>
<td>ARG</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>2</td>
<td>THR</td>
<td>T</td>
<td>ice1_P</td>
<td>1</td>
</tr>
<tr>
<td>R@P</td>
<td>116</td>
<td>ARG</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>4</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>9</td>
</tr>
<tr>
<td>R@P</td>
<td>116</td>
<td>ARG</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>6</td>
<td>SER</td>
<td>S</td>
<td>ice1_P</td>
<td>20</td>
</tr>
<tr>
<td>R@P</td>
<td>116</td>
<td>ARG</td>
<td>V-KAPPA</td>
<td>ice1_L</td>
<td>R@P</td>
<td>7</td>
<td>ALA</td>
<td>A</td>
<td>ice1_P</td>
<td>7</td>
</tr>
</tbody>
</table>

Kaas Q. et al
IMGT unique numbering

V-DOMAIN (IG, TR)
AND
V-LIKE-DOMAIN
(other than IG, TR)

C-DOMAIN (IG, TR)
AND
C-LIKE-DOMAIN
(other than IG, TR)

G-DOMAIN (MHC)
AND
G-LIKE-DOMAIN
(other than MHC)

Immunoglobulin superfamily (IgSF)

MHC superfamily (MhcSF)
CONCLUSIONS and PERSPECTIVES

Three IMGT® biological approaches: genetic, genomic, structural. Knowledge is based on the IMGT-ONTOLOGY axioms and concepts.

On the informatics side: building of IMGT-Choreography on interactions between IMGT® components to answer biological questions.

The same axioms and concepts are valid for a multiscale (molecule, cell, organ, organism) and systemic approach (system immunobiology).

Duroux P. et al. Biochimie in press
Many thanks to the IMGT® team at Montpellier, France