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PREFACE

This dissertation deals with proteasomes (from 'protease' and Greek 'soma' = protein-

chopping body) and their role in the regulation of immune responses. Proteasomes are

barrel-shaped molecular machines (enzymes) that are found in every cell of the body.

Their job is to chop up proteins, much like a garden shredder that cuts twigs and branches

into small pieces. The small protein pieces can be transported to the cell surface to be

presented to T-cells, immune cells that constitute a part of the white blood cells. If a body

cell is 'sick' (i.e. it has turned into a tumor cell or is infected by pathogens such as viruses

or bacteria), the protein fragments on the cell surface look different. They therefore can

activate T-cells to kill the diseased cell for the good of the whole organism. During the

research for my Diploma thesis (April-Dec. 1997) and my Ph.D. thesis (Jan. 1998-Dec.

2000) I tried to find out more about how exactly proteins are cleaved by proteasomes. I

was lucky and could determine some of the rules that proteasomes follow to chop up

proteins. These rules were used as a basis for the prediction of proteasome cleavages.

My results have important implications for vaccine development and the prediction of

immune responses.

The dissertation is divided into 4 main parts: Introduction, Results, Summary and

References.

The Introduction provides an extensive, state-of-the-art synopsis on proteasomes and

their function within the immune system. My own published and unpublished results,

described in detail in the Results part, are briefly mentioned in the Introduction. Specific

background information on the single projects of the Results part are given in the
introductions to the five Results sections.

The Results part is also divided into sections (2.1-2.5), which represent the main

accomplishments of my Ph.D. thesis project and are based on publications (2.1-2.3) and

submitted manuscripts (2.4 and 2.5) that resulted from my research. They are presented

here in chronological order and, as they are thematically linked and interdependent, were

chosen to make up the main body of my thesis. Each section of the Results part is

subdivided into parts specific for each sub-section: Summary, Introduction, Materials &

Methods, Results, Discussion, References, Abbreviations and Participating researchers.

Therefore, no separate sections for Materials & Methods and Discussion exist. Please

note that the five sections of the Results part reflect the state-of-the-art of the respective
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publishing date, i.e. late 1998 for sections 2.1 and 2.2, and early 2000 for 2.3. Sections

2.4 and 2.5 have only been submitted for publication recently and therefore reflect current

state of the art. - I chose this format for the Results section because it adequately mirrors

the chronological course and rationale of the entire thesis project. Besides, it corresponds

to a common, international format for the presentation of scientific results and thus

guarantees this work to be comprehensible for international readers.

The Summary at the end of this dissertation combines the results of the five parts of the

Result section and puts them into perspective of future developments. Moreover, projects

that are still ongoing or were not mentioned for space limitations are briefly outlined here.

References are given at the end of this thesis for the Introduction and the Summary.

Additional references are provided at the end of each section of the Results part for the

specific projects.

Enjoy reading!

Alexander K. Nussbaum
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1 Introduction

1.1 The Immune System

1.1.1 Function

Every organism has to protect itself against continuous attack by foreign organisms, such

as parasites, fungi, bacteria or viruses. In the case of prions, even foreign proteins seem

to be able to act as pathogens. The immune system was evolved for the defense against

these pathogenic organisms. Its two essential characteristics are the recognition of the

pathogen and its removal.

1.1.2 Overview

The immune system can be divided into the innate immune system and the adaptive (or

specific) immune system. The former contains anatomical barriers such as the skin and

mucosae, physiological barriers such as lysozyme, interferons and complement, endocytic

and phagocytic cells and natural killer cells. Besides, inflammatory responses -

vasodilatation, extravasation of inflammatory cells, acute phase proteins and chemical

messengers such as histamine and bradykinin – belong to the innate immune response.

The adaptive immune response is characterized by four main features: specificity,

diversity, memory and the recognition of self, altered self and non-self. The cells of the

adaptive immune system which guarantee these attributes are, on the one hand,

professional antigen-presenting cells (APC) and, on the other hand, lymphocytes.

The B-lymphocytes, together with the antibodies they secrete, constitute the main

effectors of the humoral immune response, whereas T-lymphocytes represent the

main effectors of cellular defense mechanisms. Cytotoxic T-lymphocytes (CTL) kill

foreign cells, mutated cells or virus-infected cells, whereas T-helper (Th) cells mainly
activate and regulate B-cells, CTL and APC through chemical messengers (cytokines).

1.1.3 Cellular components and the role of peptides

Cells of the adaptive immune system, especially T-cells, screen host cells for two

properties: First, is it a host (self) cell or a foreign (non-self) cell? Second, in case the T

cell is looking at self: Is the host cell healthy or is it threatened by virus-infection or

transformation? Malignant transformation of a cell can be the result of mutations that will
lead to changes in the characteristics of the host cell (altered self).
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All the decisions about self, foreign and disturbed self are made with the help of the

major histocompatibility system (MHC). The peptide-binding and –presenting MHC-cell

surface molecules can be viewed as passports for host cells. MHC class I (MHC I)
molecules can be found on the surface of most nucleated cells, whereas MHC class II
(MHC II) molecules are mainly found on the surface of APC (dendritic cells, B-cells,

macrophages), but also on inflamed and thymus epithelial cells. Self and non-self are

distinguished by characteristics of both the MHC molecules and the peptides presented by

them; the distinction between healthy self and altered self depends on the nature of the

peptides presented in the MHC binding groove and on the presence of signals activating

APC.

1.1.3.1 MHC-molecules

MHC II molecules consist of two chains (α, β) whose C-termini are fixed in the cell

membrane and whose N-terminal domains form the peptide binding groove. MHC I

molecules are comprised of a heavy α-chain which is non-covalently linked to β2-

microglobulin (β2m). Here, the peptide binding groove is only made up of the α-chain.

One of the main differences between MHC I and MHC II molecules, besides their different

cellular distribution (see 1.1.3) and peptide-loading (see 1.2), is the structure of the

peptide binding groove. In both cases, the groove is made of a “floor” of β-sheet structure

and two lining “walls” of α-helices. However, whereas the groove is open to both sides for

MHC II molecules, it is closed for MHC I molecules (Bjorkman et al., 1987; Brown et al.,

1993). As a result, MHC I can only accommodate peptides of 8-10 aa in length (Falk et al.,

1991; Madden et al., 1991), whereas MHC II can hold peptides of up to 15-20 aa. In both

cases, however, the ligand interacts with the surface of the binding groove only over a

stretch of about 9 aa. Non-covalent (hydrophobic) interactions and electrostatic forces

(hydrogen bonds) fix the peptide to the MHC molecule. This is achieved by means of

particular aa of the peptide, the so-called anchor-residues, that fit snugly into

complementary pockets of the MHC binding groove (Rammensee et al., 1993). A

peculiarity of MHC molecules is their enormous polymorphism (Parham et al., 1995).

This polymorphism entails that different MHC alleles vary in their pockets and therefore

require different binding motifs, i.e. combinations of anchor residues, for binding of their

peptide ligands. Most MHC I binding motifs require hydrophobic (aromatic and branched-

chain) aa in P9, i.e. at the C-terminus of the peptide. Ligands of the human MHC I

molecules HLA-A*0201, for example, need the aa L or V in P2 (position 2) and V or L in

P9. HLA-A3 and HLA-A11 require L, V or M in P2 and K in P9 of the presented peptide
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(Rammensee et al., 1999). Thus, the binding motifs clearly represent a strict selection

criterion for peptide sequences to be presented by MHC molecules (see also 1.2.2 and
Figure 1.2-1).

1.1.3.2 Antigen recognition by T-lymphocytes

T-lymphocytes are selected according to two criteria during their maturation in the thymus:

They have to be able to recognize self-MHC (positive selection) and they must not be

activated by MHC-bound self-peptides (negative selection). The former requirement

guarantees that T cells "see" presented peptides only in the context of self-MHC, named

restriction for self-MHC or self-restriction (Zinkernagel and Doherty, 1974).

Autoreactive T cells specific for self-MHC and self-peptide are thus eliminated, leading to

self-tolerance. The selection of a self-restricted, self-tolerant T cell repertoire (i.e. pool

of available T cells) guarantees that the cellular immune response only hits foreign

organisms, virus-infected or tumor cells.

MHC/peptide-complexes are recognized by the T cell receptor (TCR), the antigen

receptor of T cells. It consists of two chains, α and β, which are linked via a disulfide

bridge. Both chains are made up of two immunoglobulin (Ig) domains. The two outer Ig

domains of each TCR chain (Vα + Vβ) build the antigen recognition site which interacts

with and recognizes the MHC/peptide-complex (see Figure 1.1-1). The actual MHC ligand
(peptide) that is recognized by T cells and activates them is called T cell epitope.

The variability of the TCR (1016) is so large that there should exist T cells recognizing all

non-self or altered self MHC ligands. However, stochastic processes in T cell maturation

and clonal T cell expansion lead to diverse T cell repertoires in individual members of a

population.

The role of the MHC molecule as a "passport" was already hinted at earlier. However,

eventually it is the nature of the peptide that decides whether T cells will be activated or

inactivated (anergized), i.e. whether an MHC-bound peptide functions as a T cell epitope

or just as an MHC ligand, respectively. Thus the peptide plays a crucial role in the
recognition of self and non-self and the regulation of immune responses.
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Figure 1.1-1: Crystal structures of TCR recognizing a MHC/peptide-complex

Front (A) and side (B) view of the human MHC molecule HLA-A2; side view (C) of the mouse MHC

molecule H-2Kb. MHC and TCR are drawn as ribbon models; the MHC-bound peptide (yellow) is

drawn as stick-model. The peptide-binding groove of MHC molecules is made up of the α1 and α2

domains of the MHC I heavy α-chain. [The pictures are taken from Garboczi et al. (1996) for (A), (B)

and from Garcia et al. (1996) for (C).]

1.2 Antigen Processing

1.2.1 MHC class II pathway

The antigen processing pathway leading to the loading of MHC II molecules is also called

endosomal pathway. Here, membrane proteins are endocytosed or extracellular

antigens are taken up either in an unspecific (phagocytosis, pinocytosis; e.g. by

macrophages) or specific fashion (receptor-mediated endocytosis; e.g. via membrane-

bound antibodies on B cells). The internalized phagosomes or clathrin-coated vesicles

then fuse with lysosomes, whose proteolytic enzymes (cathepsins and probably some

aminopeptidases) and low pH will start the degradation of the antigens. So-called MHC II-

loading compartments (MIIC), formed by fusion of lysosomal vesicles with MHC II-

containing trans-Golgi vesicles, represent the sites where the actual loading of MHC II

molecules with peptides takes place. The final, trimolecular complex of MHC II α- and β-
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chains and the peptide is then transported to the cell surface (Cresswell, 1994; Watts,

1997).

1.2.2 MHC class I pathway

The class I pathway of antigen processing, also called the cytosolic pathway, leads to

the loading of MHC I molecules by peptides mainly derived from cytosolic proteins (Pamer

and Cresswell, 1998; Früh and Yang, 1999; van Endert, 1999). In healthy cells, these

peptides stem solely from intracellular host (self) proteins. On the contrary, in transformed

(mutated) or virus-infected cells, mutated (=altered self) or viral (=non-self) peptides,

respectively, can make it onto MHC I and to the cell surface. The first step in this pathway

is the degradation of proteins by the barrel-shaped, multicatalytic proteasome complex.

The proteasome chops up proteins into small protein pieces, some of which will make

their way - probably assisted by chaperones - to the transporter associated with
antigen processing (TAP) in the ER membrane.

Figure 1.2-1: Schematic overview over antigen processing in the class I pathway.

A cytosolic protein is targeted for degradation by the proteasome (1). The nature of the resulting

peptide fragments is not completely understood (?). Some proteasomal cleavage products are

translocated by TAP (2) into the endoplasmic reticulum (ER) and loaded onto MHC class I molecules

(3). MHC/peptide-complexes on the cell surface are screened by CTL for foreign or mutated peptides

(not shown).

TAP preferentially translocates peptides of 8-16 aa with hydrophobic or basic C-termini

into the ER lumen (Schumacher et al., 1994; Momburg et al., 1994; van Endert, 1999;

Uebel and Tampe, 1999). It was only recently determined that the major substrates for
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TAP in vivo are derived from newly synthesized proteins (Reits et al., 2000). An

intricate army of ER-resident chaperones (calreticulin, calnexin, tapasin and perhaps PDI

and gp96) will then help to load fitting peptides into the binding groove of MHC I

molecules (Lammert et al., 1997a, Lammert et al., 1997b; Sadasivan et al., 1996). The

fate of peptides that do not bind to MHC is not completely understood (Falk et al., 1990),

but they are probably removed from the ER by retrograde transport into the cytosol, which

is most likely mediated by the Sec61p channel (Koopmann et al., 2000). An overview over

MHC I processing pathway is shown in Figure 1.2-1.

1.3 The Proteasome

1.3.1 Cellular roles of proteasomes

Proteasomes are the key proteases for non-lysosomal proteolysis in eukaryotic cells. Most

(short-lived1) proteins, in order to be recognized and degraded by proteasomes, have to

be tagged by ubiquitin (Hershko and Ciechanover, 1998; Hershko et al., 2000). Signals for

ubiquitination are manifold (reviewed in Ciechanover, 1998): They comprise primary

(substrate-inherent, structural) motifs or secondary (post-translational) modifications.

Examples for primary motifs include the N-end rule pathway (i.e. protein stability is

influenced by its N-terminal aa residue; Bachmair et al., 1986; reviewed in Varshavsky,

1996; Varshavsky et al., 2000) and the destruction box, a nine-amino-acid motif found in

mitotic cyclins and certain other cell-cycle regulators. A secondary modification that can

trigger ubiquitin-dependent degradation is phosphorylation (e.g. in IκBα; Yaron et al.,

1997), for example at Pro(P)-, Glu(E)-, Ser(S) and Thr(T)-rich (PEST-) sequences.

Proteins can also be targeted for degradation by association with an ancillary protein (e.g.

p53 is degraded after binding to the human papilloma virus oncoprotein E6; Scheffner et

al., 1993). It was shown recently that a large fraction of the substrates for ubiquitin-

dependent proteasomal degradation are newly synthesized proteins, so-called DRiPs (for

Defective Ribosomal initiation Products) (Schubert et al., 2000). Proteasomes degrade

some proteins devoid of ubiquitination-tags, for example ODC (Murakami et al., 1992),

damaged calmodulin (Tarcsa et al., 2000) and p21Clp1 (Sheaff et al., 2000). This is

speculated to reflect a more ancient mode of substrate recognition by proteasomes,

                                               

1 It must be noted that to this date, it is still disputed whether ubiquitin conjugation is essential in

the degradation of long-lived proteins (Rock and Goldberg, 1999).
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mediated by sequence signals ("class I degrons") inherent in the substrate sequence

itself (Verma and Deshaies, 2000). Although some examples for this hypothesis have

lately been identified (see above), it still must be assumed that by far the main part of
protein turnover in eucaryotic cells is ubiquitin-dependent.

Proteasomes are not limited to purely metabolic functions. Proteasomal protein

degradation also takes over regulatory roles such as periodic cyclin degradation (Glotzer

et al., 1991; Seufert et al., 1995), the removal of misfolded proteins (Seufert and Jentsch,

1990) or the activation of the transcription factor NF-κB (Palombella et al., 1994).

Proteasomes are mainly localized within the cytosol and the nucleus of cells, but they are

also found in association with the endoplasmic reticulum (ER) (Rivett et al., 1992;

Newman et al., 1996; Enenkel et al., 1998; Brooks et al., 2000) and the cytoskeleton
(Scherrer and Bey, 1994).

The importance of ubiquitin-dependent protein degradation in MHC I antigen presentation

was suggested by the fact that enhanced protein degradation rescued the defective

presentation of viral epitopes in vaccinia-infected cells (Townsend et al., 1988) and was

elegantly demonstrated by the use of mutant cell lines with defects in the ubiquitin-

dependent degradation pathway (Michalek et al., 1993; Grant et al., 1995). The

fundamental role of proteasomes themselves for the supply of MHC I ligands was

confirmed by the use of proteasome inhibitors: In living cells, peptide aldehyde inhibitors

and the very proteasome-specific Streptomyces compound lactacystin-β-lactone

completely blocked the presentation of peptides from several different proteins, including

ovalbumin, β-galactosidase, and influenza viral antigens (Rock et al., 1994; Harding et al.,

1995; Grant et al., 1995; Cerundolo et al., 1997).

1.3.2 Proteasome species: Structure and function

Proteasomes exist more or less in two ways: As the free catalytic (i.e. proteolytically

active) core of all proteasome species, the barrel-shaped 20S proteasome (named after

its  sedimentation coefficient), and as associations of 20S proteasomes with regulatory

protein complexes. 20S proteasomes exist in a constitutive form and as so-called

immuno-proteasomes, in which the active site subunits have been exchanged for IFN-γ-

inducible immuno-subunits. 20S proteasomes can be capped on both ends of their

cylindrical structure by regulatory protein complexes, the 19S regulatory particle (19S

cap, PA700) or the IFN-γ-inducible activator PA28 (11S regulator). 20S proteasomes that

are singly or doubly capped by the 19S regulatory particle are called 26S proteasomes
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(Figure 1.3-1). The 19S particle consists of a 20S-proximal 'base', which contains all six

proteasomal ATPases and can activate the degradation of peptides and non-ubiquitinated

proteins, and of a 'lid', which is required for ubiquitin-dependent proteolysis (Glickman et

al., 1998). As the 19S cap confers recognition of ubiquitin (Deveraux et al., 1994; Ferrell

et al., 1996), 26S proteasomes are thought to be responsible for the main part of protein

degradation in vivo (DeMartino and Slaughter, 1999; Ferrell et al., 2000). However, 20S

proteasomes might execute parts of the ubiquitin-independent protein turnover (1.3.1).

Additionally, there exist hybrid proteasomes that are capped, on the one end, by 19S

and, on the other end, by PA28 (Hendil et al., 1998; Tanahashi et al., 2000). These hybrid

proteasomes might play an important role in vivo as they possibly link protein degradation

to immune responses (see 1.3.8).

Figure 1.3-1: The different proteasome species within cells.

Relative distributions of proteasomes and their regulators, PA28 and PA700 (= 19S), in HeLa cells.

Immuno-proteasomes are missing from the figure; they can be a part of any proteasome complex

containing 20S proteasomes. [The graph was taken from Tanahashi et al. (2000).)

The two most abundant proteasome species in cells are 20S and 26S proteasomes. Two

recent reports show that free 20S is more abundant than 26S (Tanahashi et al., 2000;
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Brooks et al., 2000). Experimental artifacts from cell fractionation methods

(centrifugation, gel filtration, Western blotting) might lead to overestimation of the amount

of free 20S, by counting molecules dissociated from larger proteasome complexes due to

the purification conditions. However, the same results were obtained by

immunofluorescent labeling of cells, confirming that free 20S really exist. Nevertheless, it

is still unclear whether 20S proteasomes are functional in vivo or whether they merely

represent assembly/disassembly intermediates on the way to/from 26S proteasomes.

Brooks and colleagues (2000) propose that the existence of free 20S proteasomes

permits the formation of PA28-20S complexes after IFN-γ-induced synthesis of PA28.

Only recently, an inhibitor of proteasomes, PI31, has been identified and described to

compete for binding to 20S proteasomes with PA28 (Zaiss et al., 1999).

1.3.3 Three-dimensional structure and catalytic mechanism of the 20S

proteasome

20S proteasomes have been found in all eucaryotes from yeast to man, in archaebacteria

and in some eubacteria (Tamura et al., 1995). The quarternary structure of 28 subunits,

which are subdivided into the homologous α- and β-subunits, is highly conserved in all

cases. However, the differentiation of the 20S subunits has increased during evolution:

Archaebacteria (Thermoplasma) only possess one kind of α- and β-subunits, some

eubacteria have two kinds whereas yeast already has 7 kinds each. Mammalian genomes

encode 3 additional, IFN-γ-inducible β-subunits, giving rise to altogether 7 α- and 10 β-

subunits for mammalian proteasomes. The number of proteolytically active β-subunits,

however, has decreased in evolution: All β-subunits of Thermoplasma proteasomes are

active (i.e. 2x7 = 14 active sites per 20S particle), whereas only 3 different active β-

subunits exist in eucaryotic proteasomes (i.e. 2x3 =6 active sites per 20S particle).

The proteolytic centers (active sites) are located on the inside of the 20S cylinder and are

embodied by three different β-subunits in eucaryotic proteasomes. The two identical

halves (α7β7) of 20S proteasomes are joined head-to-head with rotational symmetry (C2-

axis along the β7β'7-contact area) (Figure 1.3-2).
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Figure 1.3-2: X-ray structure of yeast 20S proteasome

The picture shows the back half of the 20S cylinder. The given dimensions of the complex were are

for Thermoplasma proteasomes, whose quarternary structure is very similar to that of yeast

proteasomes (taken from Baumeister et al., 1998). The locations of the active sites are marked by

the binding of inhibitor molecules (yellow). *The opening in the α-rings of yeast proteasomes is only

formed upon activation by SDS or binding of the regulators 19S or PA28 (Whitby, 2000; Groll, 2000).

See Figure 1.3-4 for a more schematic view. [The x-ray picture is taken from Groll et al. (1997).]

Proteasomes belong to the small group of threonine-proteases within the family of N-
terminal nucleophile (Ntn) hydrolases (Seemüller et al., 1995). The nucleophile for

peptide-bond hydrolysis is the γ-O-atom of the N-terminal threonine in the active β-

subunits. This threonine residue is only liberated after autocatalytic processing of

propeptides (Seemüller et al., 1996), a mechanism that guarantees proteasome halves

not to become active before their assembly into complete proteasome cylinders. The N-

terminal amino group acts as proton-acceptor-donor when the substrate peptide bond is

attacked. As for other Ntn-hydrolases, a long-lived acyl-enzyme intermediate is postulated

(Löwe et al., 1995). The proposed catalytic mechanism is depicted in Figure 1.3-3. The

cleavage product with the newly made N-terminus should then diffuse away from the

active site, thus rendering it less likely to be cleaved again by the same active site. This

assumption is in line with the results of kinetic modeling which suggest that the C-termini

of internal protein fragments are generated before the N-termini (Holzhütter and Kloetzel,
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2000).

Figure 1.3-3: Catalytic mechanism of proteasomes

The chemical cleavage reactions are shown for a substrate peptide bond (top), a vinyl sulfone

inhibitor (center) and lactacystin, a β-lactone inhibitor (bottom). [The figure is taken from Kisselev et

al. (2000).]

1.3.4 Topology of the active sites

The three-dimensional structure of a eucaryotic 20S proteasome (yeast) was only solved

recently by X-ray crystallography (Groll et al., 1997; Figure 1.3-2). The X-ray image made

it possible to determine the precise positioning of the single subunits in relation to each

other (schematic pictures in Figure 1.3-4). The subunit topology of human 20S

proteasomes was first reported to slightly differ (Kopp et al., 1997), but was later

confirmed by the same group to be identical to that of yeast (Dahlmann et al., 2000).

Therefore, the subunit arrangement found for yeast proteasomes seems to be valid for all

eucaryots.
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Figure 1.3-4: Topology of αααα- and ββββ-subunits in yeast 20S proteasomes

(Top) 3-D picture of subunit topology; nomenclature: systematic/yeast. (Bottom) Rolled-open 20S

cylinder revealing the relative positions of the subunits; nomenclature: systematic, yeast, human,

IFN-γ-inducible (from top to bottom). C2: symmetry axis through the cylinder. [The picture on the top

was taken from Groll et al. (1999).]

For reference and to avoid confusion early on, an overview on the nomenclature and the

cleavage specificities of the β-subunits that harbor active sites is shown in Table 1.3-1.
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Table 1.3-1: Nomenclature and cleavage specificity of the active site ββββ-subunits in yeast
and human 20S proteasomes

Nomenclature Specificity*

systematic human yeast

constitutive IFN-γ-

inducible

constitutive IFN-γ-

inducible

(only const.) (for const. subunits)

β1 β1i δ/Y LMP2 Pre3 post-acidic

β2 β2i Z MECL-1 Pup1 T-like

β5 β5i X LMP7 Pre2 ChT-like

* The cleavage specificities relate to the constitutive subunits. Check section 1.3.7.2 for more detail.

1.3.5 Cleavage specificity

As proteasomal degradation products are the main source for MHC I ligands, the most

interesting aspect for immunologists in the investigation of eucaryotic proteasomes is their

cleavage specificity. Characterization of proteasomal cleavage specificity has been and is

still looked at using artificial tri- or tetrapeptides including a fluorogenic leaving group (see

Figure 1.3-5).

Several distinct proteolytic specificities have been described: the chymotrypsin (ChT) -like

activity (cleaving after hydrophobic - both branched chain and aromatic - aa residues), the

trypsin (T) –like activity (cleaving after the basic aa Arg, Lys and His) and the

peptidylglutamyl-peptide hydrolyzing (PGPH) or post-acidic or caspase-like activity

(cleaving after the acidic aa Asp and Glu). In addition, two more activities have been

postulated: SNAAP (small neutral amino acid peptidase) and BrAAP (branched-chain

amino acid peptidase) (Orlowski et al., 1993). The differential influence of inhibitors on

some of these activities led to the assumption that they must origin from distinct active

sites (Orlowski, 1990; Rivett, 1989; Orlowski et al., 1993). However, the crystallographic

structure showed and it is today accepted that only three different active sites exist.
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Figure 1.3-5: Fluorogenic model substrates used for characterization of proteasomal cleavage
specificities.

(A) The peptide is cleaved between the most C-terminal aa (P1) and the fluorogenic leaving group

(LG). The cleavage specificity can only be determined by P-residues. (B) A normal peptide contains

aa C-terminal of the cleavage site (P'-aa) which influence cleavage site selection. PG: protective

group; P4-P4': aa-string (nomenclature according to Schechter and Berger, 19672); LG: leaving

group that fluoresces after being cleaved off; pair of scissors symbolize a proteasomal cleavage.

Analyses of mutant yeast proteasomes allowed the assignment of proteolytic activities to

certain proteasomal β-subunits (Heinemeyer et al., 1993; Hilt et al., 1993; Enenkel et al.,

1994; Arendt and Hochstrasser, 1997): ββββ1/Pre3 ↔↔↔↔ post-acidic, ββββ2/Pup1 ↔↔↔↔ T-like,

ββββ5/Pre2 ↔↔↔↔ ChT-like. Today it is clear that results obtained with short fluorogenic

substrates only partially reflect physiological reality, because proteasomes select

cleavage sites not only according to chemical properties of the P1-aa. Positions beyond

P1 influence cleavage site selection (Ustrell et al., 1995ba; Ustrell et al., 1995ab; Cardozo

et al., 1994; Ehring et al., 1996). Our own experiments with natural peptides and wild-type

and mutant yeast 20S proteasomes showed that the cleavage specificities of the three

active sites partially overlap for cleavages after some hydrophobic aa (L, Y, A, M). We

could also demonstrate that the postulated BrAAP-activity was mainly inherent to β1,

                                               

2 The positions relative to a cleavage site (↓) are numbered as described by Schechter and Berger,

1967:

Pn-Pn-1-...-P2-P1 ↓ P1’-P2’-...-Pn-1’-Pn’.
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which was subsequently confirmed in inhibition studies by McCormack et al. (1998) and

Cardozo et al. (1999) and by crystallographic studies by Groll et al. (1999). We also found

that some cleavages are exclusively performed by one of the active sites (Dick et al.,

1998; for more details, please refer to 2.1). Later, we could for the first time verify the

reported P1-preferences of yeast 20S proteasome active sites in in vitro digests of a large,

unmodified protein, enolase-1 from yeast (436 aa). More importantly, we were able to

expand the cleavage motifs for the three active sites to residues in a window from P6-P6'

and, using wild-type and mutant 20S proteasomes, could determine the contribution of

each active subunit to enolase degradation (Nussbaum et al., 1998; for more details,

please refer to 2.2). In short, ChT-like cleavages after hydrophobic aa contributed most to

enolase degradation. This finding is paralleled by the observation that a mutation of the

critical Thr residue to Ala in Pre2, the yeast β-subunit harboring the ChT-like activity, is

lethal for yeast cells (Heinemeyer et al., 1997; Groll et al., 1999). However, this effect is

most likely due to ineffective autocatalytic propeptide cleavage in Pre2, resulting in

impaired proteasome assembly.

We also found that cleavage site selection is affected by aa in P4 (Pro!) and saw an

important contribution of P1'. Several reports confirmed the importance of especially Pro

at P4 for proteasomal cleavage site selection: Glas et al. (1998) found that P4 in peptide-

based proteasome inhibitors had a major influence on their binding to the active sites.

Shimbara et al. (1998) observed that Pro residues at P4 of MHC I ligands conferred

protection against internal cleavages by rat liver proteasomes, supporting our findings that

Pro is an unfavorable P1-aa and directs cleavages to peptide bonds 3 aa C-terminal of

Pro. Finally, the Pro-effect was recently verified using systematically mutated peptides as

substrates for in vitro digests using human blood proteasomes (Miconnet et al., 2000).

Mammalian 20S proteasomes preferentially cleave natural polypeptides in vitro after

aromatic (F, Y), aliphatic (L, I, V), basic (K, R) or acidic (D, E) residues. However, not

each single one of these residues is always used. We were able to confirm and extend

these results by enolase-degradation experiments using human erythrocyte 20S

proteasomes (see 2.2.9) and constitutive and immuno-proteasomes from B-cell lymphoma

cell lines (see 2.5). Our own lab also compared the cleavage specificities of human

erythrocyte 20S and 26S proteasomes in in vitro degradation of bovine β-casein and

found an overlapping, but distinct set of cleavage sites (Emmerich et al., 2000). However,

the same rules (cleavage motifs) were employed by both 20S and 26S proteasomes to

generate these cleavages. Due to some experimental limitations (e.g. the normalization of

the two different proteasome batches, the unusual substrate casein and experimental
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variance), it is difficult to draw final conclusions from these results. An additional

argument for similar cleavage specificities is the fact that 26S proteasomes, like 20S

proteasomes, were able to generate the exact MHC I ligand SIINFEKL from a whole

protein in vivo, even without the natural flanking sequences (Ben-Shahar et al., 1999). To

gain more insight into this question, the cleavage specificities of 20S and 26S

proteasomes should be compared systematically using a panel of peptide substrates.

1.3.6 Fragment length distribution

Proteasomes from different species do not degrade peptides and proteins into single aa,

but into fragments of about 3-30 aa in length. Thermoplasma proteasomes generate

fragments in the range of 3-30 aa from bovine β-casein (Kisselev et al., 1998). As the

degradation products of Thermoplasma proteasomes were previously found to average 7-

8 aa, a molecular ruler hypothesis was coined (Wenzel et al., 1994): Either the distance

of active sites or binding constraints for the substrate to the inner surface of the

proteasome were thought to determine the fragment length. In the small community of

proteasome researchers, the term ‘molecular ruler’ was almost exclusively linked to the

former model (fragment length determined by the distance of active sites), especially after

the distance between two active site threonines in the Thermoplasma proteasome had

been determined to be 28 Å or 2.8nm (Löwe et al., 1995), a stretch just fitting a 7-8mer

peptide in extended conformation. For eucaryotic proteasomes, distinct fragment lengths

of 8-9 and 14-15 aa were at first reported (Niedermann et al., 1996). Later, a wide

fragment length distribution similar to that of Thermoplasma proteasomes was detected

for yeast (Nussbaum et al., 1998) and mammalian 20S proteasomes (Kisselev et al.,

1999b; our own unpublished results, see 2.2.9 and 2.5). The predominating and average

fragment lengths still range between 7-9 aa, but no particular fragment lengths really stick

out. In order to describe the shape of the fragment length curve (starting at 3 aa, with a

peak at 7-9 aa and tailing out around 30 aa) the term log-normal distribution was used

(Kisselev et al., 1998). Also, the degradation of denatured lysozyme by bovine constitutive

and immuno-proteasomes yielded final fragments of 6-20 aa, without the prevalence of a

particular size (Wang et al., 1999). However, the strongest piece of evidence against a

molecular ruler based on the distance of the active site threonines came from our own

experiments using mutant and wt yeast 20S proteasomes: Both wt proteasomes

(altogether 6 active sites) and mutants with reduced numbers of active sites due to T1A-

point mutations (4 or 2 active sites left) degraded enolase into fragments of the same

range, 3-25 aa (Nussbaum et al., 1998; please refer to 2.2 for details). Therefore, the
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distance of active sites does not influence the size of the fragments (see Figure 1.3-6

for distances of active sites in eucaryotic proteasomes).

Figure 1.3-6: Distances of active sites in yeast proteasomes

The distances between the active sites in yeast proteasomes range from 28-65 Å. Even proteasomes

harboring only β5 as active subunit (distance: 49 Å, fitting about 12 aa) generate fragments from 3-25

aa, arguing against the classical interpretation of the molecular ruler hypothesis (Nussbaum et al.,

1998; refer to 2.2 for details). [The illustration was taken from Loidl et al. (1999).]

It was proposed before that binding of the regulator PA28 caused proteasomes to directly

generate MHC I ligands by coordinated dual cleavages (Dick et al., 1996). Only later, the

contribution of the different active sites to the generation of some of the dual cleavage

products could be determined using mutant yeast proteasomes. These data, together with

the crystallographic structure of yeast proteasomes, revealed that not all previously

identified dual cleavage products can be generated by two simultaneous cleavages (Dick

et al., 1998). The sheer distances between the active site threonines should theoretically

permit the generation of dual cleavage products from 7 to 16 aa in length (see Figure

1.3-6). Yet, it must be emphasized that these distances do not reflect the shortest possible

stretch of aa that could be cleaved by two active sites simultaneously. Steric requirements

must also be taken into account, for example the correct orientation of the substrate aa

chain towards and its interaction with the inner surface of the substrate binding pocket,

probably over a stretch of 6-10 aa up- and downstream of the cleavage site (Groll et al.,

1997; Nussbaum et al., 1998). This could require some bending of the aa chain that would

substantially increase the length of dual cleavage products. However, as the bulk of
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proteasomal cleavage products does fall into the size range of 7-9 aa, it is likely that

many of them are produced by consecutive cleavages at nearby or distant active sites.

Both 20S and 26S proteasomes from rabbit degraded several denatured or unfolded

proteins (IGF, ovalbumin, casein) into fragments of 3-22 aa, though at the same time

producing a different peptide footprint in HPLC-chromatograms (Kisselev et al., 1999b). A

comparison of the protein degradation by human 20S and 26S proteasomes performed in

our lab showed that 26S proteasomes degrade bovine β-casein into slightly longer

fragments (range: 4-36 aa; average length: 15-18 aa) than 20S proteasomes (3-31 aa, 7-

10 aa). (Emmerich et al., 2000). The pool of generated peptides was only partially

identical between the two proteasome species. However, as stated above, these

discrepancies could be explained by the experimental difficulties to normalize different

proteasome batches. The fact the cleavage site selection followed similar rules for both

20S and 26S proteasomes implies that the cleavage preferences of 20S proteasomes are

not changed after binding of the 19S regulatory particle. Because of the aforementioned

and due to the lack of in vitro substrates for 26S proteasomes, it seems fair to study 20S

proteasomes in vitro to gain insight in the in vivo functions of 26S proteasomes.

1.3.7 Modulation by interferon γ (IFN-γ)

The chemical messenger IFN-γ, which is mainly produced by CTL, NK and inflammatory T

(TH1) cells, regulates several immunologically important processes such as the activation

of macrophages and NK cells, B cell differentiation, antibody isotype switching and the

suppression of helper T (TH2) cell responses. In addition, IFN-γ can directly clear virus-

infection in a noncytopathic way. Antigen presentation is boosted by IFN-γ in two ways:

On the one hand, the transcription of MHC I and II genes is enhanced, resulting in

increased surface expression of MHC I and II. On the other hand, numerous components

of the MHC I antigen processing machinery (TAP, PA28 and immuno-subunits of the

immuno-proteasome) are induced. It is assumed that these components have evolved to

"fine-tune" the protein degradation machinery for its role in immune responses against

viruses. The influence of PA28 and the incorporation of immuno-subunits on protein

degradation by proteasomes is discussed in detail below.

1.3.7.1 PA28, the activator/regulator of mammalian proteasomes

The proteasome modulator PA28 (also called 11S regulator) was discovered through its

ability to stimulate proteasomal hydrolysis of short fluorogenic peptide substrates (Dubiel

et al., 1992). PA28 consists of two homologous subunits, PA28α and PA28β (Mott et al.,
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1994; Ahn et al., 1995; Song et al., 1996), which form a hetero-hexameric ring of α3β3

stoichiometry. Recombinant PA28α or PA28β form homo-heptameric structures which are

also able to stimulate peptide hydrolysis, though less efficiently than PA28α/β hetero-

hexamers (Stohwasser et al., 2000). In the electron microscopic picture, PA28 can be

seen attached to the two ends of the 20S cylinder (Gray et al., 1994). Very recently, the

three-dimensional structure of a PA28-20S complex was solved (Figure 1.3-7): The homo-

heptameric ring of Trypanosoma brucei PA26 (equivalent of mammalian PA28; Yao et al.,

1999) binds to both ends of the 20S cylinder via the C-terminal interaction loops in each

PA28 monomer. These interactions lead to rearrangements in the N-termini of the 20S

proteasome α-rings which cause them to open (see Figure 1.3-8).

Figure 1.3-7: Complex of Trypanosoma brucei PA26 and yeast 20S proteasomes

The homo-heptameric PA26 (yellow) from Trypanosoma brucei can be seen attached to both ends of

the 20S cylinder. The N-termini of the 20S α-subunits (red and pink) become rearranged (arrows),

thereby opening the α-ring. The 20S cylinder is clipped to visualize the central channel. [Image taken

from Whitby et al. (2000).]

Both PA28α and PA28β are strongly induced by IFN-γ and IFN-α (Ahn et al., 1995), a fact

that early on pointed towards an immuno-modulatory role of PA28. Experiments using
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short fluorogenic substrates initially showed an influence of PA28 on the cooperativity

of the active sites of 20S proteasomes (Ma et al., 1992; Yukawa et al., 1993). PA28 was

therefore believed to function as a positive, allosteric regulator. Moreover, a change of the

proteasomal cleavage pattern was observed in natural peptides in the presence of PA28

(Groettrup et al., 1995). Later results, however, demonstrated a different aspect: PA28

induced stronger immunologically relevant cuts, whereas the cleavage pattern was not

changed (Dick et al., 1996; Niedermann et al., 1997). Hence, PA28 caused better lysis of

virus-infected cells by CTL (Groettrup et al., 1996b). PA28β-deficient mice lack PA28α/β-

complexes and display impaired CTL responses and immuno-proteasome assembly

(Preckel et al., 1999), although a role for PA28 in immuno-proteasome assembly was not

observed by a different group (Groettrup, personal communications). A recent report

showed comparable activation of all three proteasomal activities by PA28α/β hetero-

hexamers without a change in the maximal activities. Kinetic modeling led to the

assumption that PA28 exerts its effect by enhancing the uptake and release of short

peptides, possibly through opening of the α-rings of the 20S proteasome (Stohwasser et

al., 2000). This hypothesis was now confirmed by solving the crystallographic structure of

a PA28-20S complex: The binding of PA28 induces an opening in the α-rings of 20S

proteasomes which will probably improve access of substrates to active sites or egress of

degradation products from the proteolytic chamber (Whitby et al., 2000; Figure 1.3-8, top).

Interestingly, both 'open' and 'closed' conformations of the α-rings of yeast 20S

proteasomes were detected by atomic force microscopy in the absence of PA28

(Osmulski and Gaczynska, 2000). The open conformation could be stabilized by addition

of a short fluorogenic peptide or denatured lysozyme, but not by addition of active site

inhibitors. The latter stabilized the closed conformation, suggesting that substrate binding

to the active sites could regulate access to the proteolytic chamber. Latest findings

support the concept that the N-termini of the α-rings function as regulators of substrate

entry: When the α3-subunit N-terminus was shortened by 9 aa, yeast 20S proteasomes

were as active as SDS- or 19S-activated 20S proteasomes, suggesting that the 19S cap

induces the α-rings to open in vivo (Groll et al., 2000; see 1.3.8.1 and Figure 1.3-8,

bottom).

There also exists a highly conserved constitutive PA28 subunit, called PA28γ or Ki

antigen, which is almost exclusively found in the nucleus of cells and which is replaced by

PA28α and PA28β after IFN-γ induction (Jiang and Monaco, 1997; Tanahashi et al.,

1997). Mice lacking PA28γ show retarded growth (Murata et al., 1999), but its role for the
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modulation of 20S proteasomes is not yet understood.

Figure 1.3-8: Open conformations of yeast 20S proteasome αααα-rings

(Top) Open conformation induced by binding of Trypanosoma brucei PA26 to yeast 20S

proteasomes [taken from Whitby et al. (2000)]: (A, B) 20S proteasome without PA26; (C, D) after

binding of PA26. After binding of PA26, the N-termini of the α-ring subunits become flexible and open

up a pore in the α-ring. (Bottom) Electron density maps of the α-rings in wt and mutated yeast 20S

proteasomes [taken from Groll et al. (2000)]: (A) wt yeast proteasome α-ring; (B) open conformation

in yeast proteasomes with 9 aa deleted at the α3-N-terminus.

1.3.7.2 Exchange of constitutive for IFN-γ-inducible active site β-subunits

In infection, interferons α and γ induce the synthesis of new proteolytically active

proteasomal β-subunits (so-called immuno-subunits) in mammals: ββββ5i / low-molecular-

weight protein 7 (LMP) 7 (replaces β5/X), ββββ1i / LMP2 (replaces β1/δ) and ββββ2i /

multicatalytic endopeptidase complex-like 1 (MECL-1) (replaces β2/Z). These subunits

are then incorporated into newly assembled 20S proteasomes, yielding so-called

immuno-proteasomes. The assembly of 20S proteasomes is tightly regulated, thus

securing that homogeneous subsets of constitutive or immuno-proteasomes are formed:

β1i/LMP2 and β2i/MECL-1 are mutually required for incorporation into 20S proteasomes
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(Stohwasser et al., 1997), probably due to their direct neighborhood in the β-rings

(Schmidtke et al., 1999), and the three immuno-subunits are incorporated cooperatively

(Griffin et al., 1998). However, this regulation seems to be leaky in one direction:

β5i/LMP7 can also be incorporated into β1/δ−β2/Z-containing proteasomes (Kingsbury et

al., 2000). Latest results describe that up to six subtypes of 20S proteasomes can coexist

in one kind of rat tissue (Dahlmann et al., 2000). These subtypes resemble constitutive,

immuno- and intermediate-type proteasomes differing with regard to their enzymatic

characteristics.

As the secretion of IFN-γ coincides with the activation of CTL and APC, it was assumed

that the induction of immuno-subunits improves antigen processing by quantitative or

qualitative changes in the peptide pool generated by proteasomes. The exchange β1/δ ➙

β1i/LMP2 reduces post-acidic cleavages in favor of ChT-like ones, an immunologically

favorable modulation because mouse and human MHC I molecules do not bind peptides

with acidic C-termini (Figure 1.3-9). Besides, TAP has a low affinity for peptides with

acidic C-termini. First studies using fluorogenic peptides, inhibitory peptide analogs or

naturally occurring peptides as substrates showed a prominent influence of the immuno-

subunits onto cleavage site selection (Gaczynska et al., 1993; Gaczynska et al., 1994;

Boes et al., 1994; Eleuteri et al., 1997; Orlowski et al., 1997). To sum up, post-acidic

cleavages were reduced and ChT-like cleavages after branched chain and aromatic aa

were enhanced for immuno-proteasomes. At first, a correlation between selected

cleavage sites in a naturally occurring peptide and the P1-preferences observed with

fluorogenic substrates could not be found (Kuckelkorn et al., 1995). However, later results

confirmed the P1-preferences in polypeptide digests: Cleavages after hydrophobic

residues in denatured lysozyme (129 aa) were augmented with bovine immuno-

proteasomes from spleen, as compared to constitutive proteasomes from pituitary,

whereas post-acidic ones were decreased (Cardozo and Kohanski, 1998; Wang et al.,

1999). However, in these studies only few individual fragments were identified in a purely

qualitative way by mass spectrometry and there was no statistical analysis of cleavage

site selection. We have just completed the analysis of human constitutive and immuno-

proteasome cleavages in digests of enolase. In order to arrive at accurate cleavage motifs

spanning several P- and P'-residues, we for the first time identified more than 100

fragments each in a quantitative way. We did not find differences in fragment lengths, but

confirmed the augmented preference of immuno-proteasomes for hydrophobic aa in P1

(Toes, submitted for publication; see 2.5 for details). Our data will be used for the

prediction of constitutive and immuno-proteasome cleavages.
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Figure 1.3-9: Active site surfaces and their influence by exchange for immuno-subunits

Changes in the cleavage preferences of immuno-proteasomes can be explained by the exchanges of

few aa residues in β1i/LMP2 as compared to β1/δ (Groll et al., 1997). The exchange R➔L abrogates

the preference of this pocket to accommodate acidic aa; the exchange T➔F reduces space, which

could be the reason for the preference of immuno-proteasomes for the aa Gly in P1' (see 2.5 for

detail). The aa lining the pockets of the other two active site subunits are not changed by the

exchange for IFN-γ inducible subunits. [Graph reproduced with the permission of T.P. Dick.]

1.3.7.3 Differential processing of CTL epitopes by constitutive and immuno-

proteasomes

Soon after the IFN-γ inducible proteasome subunits had been discovered, it was shown

that in cell lines they were not generally required for stable MHC I surface expression and

for processing and presentation of antigenic peptides from influenza virus and an

intracellular protein (Momburg et al., 1992; Arnold et al., 1992). However, mice lacking

LMPs showed deficiencies in the immune system: LMP7-deficient mice exhibit reduced

MHC I surface expression and presentation of the endogenous antigen HY (Fehling et al.,

1994). LMP2-deficient mice display lower numbers of CD8+ T lymphocytes, diminished

presentation of an Influenza epitope and a reduced CTL-response against Influenza virus
infection (Van Kaer et al., 1994).

The influence of immuno-subunit incorporation onto antigen processing has been studied

extensively. However, no general rule has been found for the presence of immuno-

proteasomes and CTL-activation. Whereas the presentation of some CTL-epitopes seems

to profit from immuno-proteasomes (Van Kaer et al., 1994; Boes et al., 1994; Fehling et

al., 1994; Schwarz et al., 2000; Sijts et al., 2000a; Sijts et al., 2000b), others seem to be

preferentially destroyed by immuno-proteasomes (Morel et al., 2000). Interestingly, many

epitopes profiting from immuno-proteasome processing are derived from viral proteins,

whereas detrimental effects of immuno-proteasomes have been reported for a

ubiquitously expressed self-protein (see Stoltze et al., 2000a for review). This could reflect

the evolutionary adaptation of the antigen processing machinery (specifically: the
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proteasome) to fight viruses. However, a recent publication shows the generation of

one viral epitope and the destruction of another by immuno-proteasomes (van Hall et al.,

2000). This differential behavior and the opposing results summarized above imply that it

is only the aa sequence of the substrate that determines whether an epitope will be

preferentially generated or destroyed by the cleavage preferences of immuno-

proteasomes.

Recently it was reported that immuno-proteasomes (and PA28) are up-regulated in

dendritic cells, especially after their transition from immature, antigen capturing cells to

mature, antigen presenting and T cell-priming cells (Macagno et al., 1999; Morel et al.,

2000). This could mean that CTL are predominantly activated against epitopes generated

by immuno-proteasomes. The consequences of this are discussed in 2.5.5.

1.3.8 Protein degradation by proteasomes

1.3.8.1 The narrow gate: It is easier for a camel...

The diameter of the Thermoplasma proteasome α-rings, the proposed substrate entry

gates, is only 13 Å, a hole barely allowing the simultaneous passing of 2-3 extended

polypeptide chains. In analogy to a biblical metaphor, it is hence easier for a camel to be

threaded through the eye of a needle than for a folded protein to enter proteasomes. In

other words, substrates probably have to be completely unfolded before they get access

to the proteolytic chamber of 20S proteasomes. This unfolding is probably exerted by

regulatory protein complexes binding to both sides of the 20S cylinder. In the

archaebacterium Methanococcus jannaschii, a proteasome regulator (PAN = proteasome-

activating nucleotidase) with chaperone-like and unfoldase activity was just recently

identified (Zwickl et al., 1999; Benaroudj and Goldberg, 2000). In yeast proteasomes, the

N-terminal residues of the α-rings were found to seal the 20S-cylinder completely (Groll et

al., 1997), raising the question how substrate entry is possible at all. Two very recent

publications have shed light on this problem: A homo-heptameric bacterial (Trypanosoma

brucei) PA28 induced the rearrangement of several α-subunit N-termini, creating a 13 Å

opening in the α-rings (Whitby et al., 2000; see Figure 1.3-8, top). The effect of a 9 aa

deletion in the α3-subunit N-terminus was similar and paralleled activation of 20S

proteasomes by the 19S cap or the detergent SDS (Groll et al., 2000; see Figure 1.3-8,

bottom). For 26S proteasomes, the 19S cap, in addition to its possible role in the α-ring

opening, is thought to exert unfoldase activity through its numerous ATPases (DeMartino

and Slaughter, 1999). However, until now only chaperone-like activity (i.e. prevention of
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protein aggregation and refolding) has been demonstrated for the base of the 19S cap

(Braun et al., 1999; Strickland et al., 2000). It is conceivable that especially hybrid

proteasomes (see 1.3.2) could link protein degradation (through ubiquitin-recognition by

the 19S lid) and efficient generation of antigenic peptides (through activation of proteolysis

by PA28). Whitby et al., 2000 speculate that in hybrid proteasomes the 19S cap could

regulate substrate entry, whereas PA28 would regulate fragment exit resulting in longer

fragments.

For all of the above, it is difficult to investigate the degradation of native proteins by 20S

proteasomes in vitro. Up to now, the digestion of proteins has thus almost exclusively

been shown for denatured or modified proteins. The degradation of oxidized insulin B-

chain was described as 'processive channeling' of degradation intermediates through the

human 20S proteasome cylinder (Dick et al., 1991). The fragment lengths found after

degradation of oxidized insulin B-chain and denatured hemoglobulin by Thermoplasma

proteasomes led to the above mentioned molecular ruler hypothesis (Wenzel et al., 1994).

Also, ovalbumin and β-galactosidase could only be degraded by mammalian 20S after

prior denaturation by S-carboxymethylation (Dick et al., 1994). Only bovine β-casein is

degraded in an unmodified form by 20S and 26S proteasomes (Pereira et al., 1992;

Emmerich et al., 2000). This is probably so because casein is already devoid of tertiary

structure in its native form, possibly due to its many proline residues. To speak with the

above metaphor, casein and denatured proteins thus rather resemble a snake than a

camel when approaching the narrow gate of the proteasomal α-rings.

1.3.8.2 Processive degradation or fierce chopping?

The degradation of fluorescein isothiocyanate (FITC)- labeled casein yielded final

degradation products early on in the digest and accumulating over time, without the

appearance of any large degradation intermediates (Akopian et al., 1997). Therefore, a

processive mechanism was postulated for proteasomal protein degradation. Processivity

was defined as complete degradation of an individual substrate "protein to oligopeptides

before attacking another protein molecule" (Akopian et al., 1997), requiring continuous

channeling of the substrate through the proteasome cylinder and continuous cleaving of

the substrate. A very vivid picture, namely that of a bread-cutter, was used to illustrate

processivity. The lack of large degradation intermediates in proteasomal digests was

confirmed by ourselves using yeast 20S and the substrate enolase (Nussbaum et al.,

1998) and by others using mammalian 20S and 26S proteasomes and FITC-labeled

casein as substrate (Kisselev et al., 1999b). It is unclear, however, whether the observed
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early accumulation of final degradation products really reflects processive, i.e.

continuous channeling of individual substrate molecules through proteasomes. For, the

reported experimental results could also be explained by an exit size filter for

degradation products, which, according to latest results, could be identical to the openings

in the α-rings (Whitby et al., 2000). Moreover, whereas small, final degradation products

accumulate in significant amounts over time, large degradation intermediates might simply

not arise in amounts above the detection limits of the analytical systems. Short peptides

might be spared from further proteasomal degradation for two reasons: (A) They

overcome the exit size filter and diffuse out of the proteolytic chamber. (B) They constitute

bad substrates for proteasomes (Dolenc et al., 1998). Proteasomal 'shredding' of proteins

into small pieces is thought to protect cells from the potential hazards of biologically active

degradation intermediates: For example the separation of a regulatory and an active

domain of a transcription factor by partial degradation could lead to uncontrollable

induction of the target gene. But still, nonprocessive degradation of reduced

carboxyamidomethylated lysozyme (RCM-lysozyme) by bovine constitutive and immuno-

proteasomes was recently reported (Wang et al., 1999). Large degradation intermediates,

which were later cleaved to small peptides, could be detected early on in digests.

According to these results, proteasomal protein degradation would rather be based on

free diffusion than on directional channeling of substrate, as in the processive model.

The authors propose that large cleavage products have the same probability of diffusing

out of the proteasome cylinder and of being cleaved again. Nonprocessive or partial

degradation of substrates could explain degradation intermediates detected in in vitro

experiments using lysozyme (Orlowski and Michaud, 1989), insulin B chain (Dick et al.,

1991) or naturally occurring peptides as substrates (Niedermann et al., 1996; our own

unpublished results). Besides, nonprocessivity could be the prerequisite for the activation

of some transcription factors by partial proteasomal processing: NF-κB can only be

formed after the partial, cotranslational processing of its precursor p105 to p50 (Lin et al.,

1998); SPT23 and MGA2 are only released after the partial processing of their ER

membrane-bound precursors (Hoppe et al., 2000). Intriguingly, in both cases a loop of a

fixed protein needs to be inserted into the proteasome for an initial endoproteolytic

cleavage and for the subsequent complete degradation of the C-terminal part of the

protein. The two processes differ in that for p105, the N-terminus is fixed by the ribosome

and the unfixed, C-terminal part is completely degraded, whereas for the precursors of

SPT23 and MGA2, the C-terminal part is at first fixed in the ER membrane but later

extracted and degraded. However, nonprocessive degradation in vitro has only been
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reported for relatively short substrates, the longest of which is lysozyme with 129 aa.

Large (and unfixed?) protein substrates, on the contrary, might preferentially be degraded

in a processive fashion for their slower diffusion and/or higher affinity to proteasomal
active sites (Dolenc et al., 1998).

Figure 1.3-10: Models for proteasomal protein degradation

(A) An unfolded substrate aa chain enters the proteasome cylinder and is cleaved by the active sites

(scissors) in the central cavity; protein fragments leave via the α-rings. This model would fit the

proposed role for hybrid-proteasomes in which the 19S cap unfolds and inserts the substrate and

PA28 regulates the exit of fragments (1.3.2 and 1.3.8.1). The distance from the active sites to the

outside of the cylinder approximately equals the length of a 20 aa polypeptide in extended

conformation. (B) Substrate proteins could enter proteasomes from both ends. Fragment exit via the

α-rings would probably still be possible in this model, but might be slowed. (C) Cleavage of a

polypeptide hairpin loop inserted into the proteasome cylinder. In the proposed examples for this

model, one part of the polypeptide chain is completely degraded whereas the other can diffuse away

as partial degradation product (Lin et al., 1998; Hoppe et al., 2000). Size estimates are taken from

Hoppe et al. (2000). Regulatory particles binding to 20S proteasomes were omitted for clarity.

It was observed that short substrate analogs for the post-acidic activity inhibit the ChT-like

one whereas substrate analogs for the ChT-like activity stimulate the ChT-like activity.

Based on these findings, a bite-chew model for protein degradation was proposed

(Kisselev et al., 1999a). According to this model, a protein substrate binds to the ChT-like

active sites and thereby stimulates ChT-like cleavages. After one round of ChT-like

cleavages ("bite"), intermediate degradation products would move on to post-acidic active

sites, thereby inhibiting further ChT-like cleavages, in order to be degraded further

("chew"). The bite-chew model was challenged by the non-catalytic modifier site model
which proposes a regulatory site distinct from the active sites (Schmidtke et al., 2000).
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Both models require allosteric effects which have not been observed yet with any

imaging method such as electron microscopy or crystallography.

1.4 From Proteasomal Degradation Products to CTL Epitopes

1.4.1 What makes proteasomal products good CTL epitopes?

Peptides binding to MHC I molecules must meet two criteria, as pointed out earlier

(1.1.3.1): Their lengths must range between 8-10 aa and their sequences have to

correlate to the MHC I binding motifs, which often require hydrophobic C-termini

(Rammensee et al., 1999). As proteasomes generate peptides with predominantly

hydrophobic C-termini (see 1.3.5) and as a large fraction of degradation products is larger

than 7 aa (see 1.3.6), proteasomal cleavage products seem to fulfill these requirements.

In order to further analyze the relationship between proteasomal cleavage products and

MHC I ligands, one study compared the cleavage specificities of proteasomes from

different species with sequence signals at the peptide termini of 134 MHC I ligands. It was

concluded that (A) the all eucaryotic, but not archaebacterial proteasomes share cleavage

preferences beneficial for the generation of the C-termini of MHC I ligands and (B) that

MHC I binding motifs probably evolved to match proteasomal cleavage products

(Niedermann et al., 1996). A more recent study more systematically checked 286 MHC I

ligands for sequence signals and found that the C-termini, but not the N-termini resemble

proteasomal cleavage sites (Altuvia and Margalit, 2000). As the cleavage preferences of

immuno-proteasomes augment the output of peptides with hydrophobic C-termini and

diminish cleavages after acidic aa (see 1.3.7.2), they are thought to produce more

potential MHC I ligands than constitutive proteasomes. In addition to the fact that no

known mammalian MHC I allele prefers ligands with acidic C-termini (as an exception,

some chicken MHC I alleles do), TAP only poorly translocates such peptides in the ER

(see below).

1.4.2 Additional selection criteria

As mentioned above, the binding motifs of MHC I molecules represent a high obstacle for

amino acid sequences to qualify as CTL epitopes (see 1.1.3.1 and 1.2.2). The MHC

binding motifs can be viewed as the last - and probably finest - of a series of filters that

peptides have to pass before binding to MHC I molecules. One of the first filters in this

chain is proteasomal cleavage specificity (see 1.3.5, 1.3.7.2 and 1.3.7.3). However, some

in-between filters probably also affect the selection of CTL epitopes, most notably TAP.
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Less specific filters include trimming peptidases in the cytosol and the ER and possibly

chaperones that channel peptides from the proteasome to TAP and protect them from
degradation into single amino acids.

1.4.2.1 TAP specificity

The peptide transporter TAP signifies an additional selection step for CTL-epitopes. Its

translocation specificity is species-dependent and has been investigated in detail for rat,

mouse and human TAP (Uebel and Tampe, 1999). Mouse TAP translocates peptides

from 9 aa in length and with hydrophobic C-, whereas rat and human TAP translocate

peptides with both hydrophobic and basic C-termini termini (Schumacher et al., 1994;

Momburg et al., 1994; van Endert et al., 1995). The preference for C-terminal aa

characteristics is in line with binding requirements for MHC I molecules: Human and rat

MHC I molecules bind peptides with hydrophobic and basic C-termini; mouse MHC I

molecules only bind peptides with hydrophobic C-termini. The three N-terminal residues of

peptides are of equal importance for TAP-selectivity: Hydrophobic and charged aa are

preferred whereas aromatic and acidic (in P1) and Pro residues (in P2, P3) are strongly

disfavored. Peptide-binding to some MHC I alleles depends on aromatic aa in P1 (HLA-

A*0201) or on Pro in P2 (the HLA B7 group) of the peptide, leading to the assumption that

the ligands for these MHC alleles need to be transported by TAP as N-terminally

elongated precursor peptides (van Endert et al., 1995). The central part of TAP-

translocated peptides does not display preferences for specific aa residues, however the

peptide backbone seems to be important for binding to TAP (Uebel et al., 1997). The

specificity of human TAP is summarized in Figure 1.4-1.

+ K,N,R R,I,Q W,Y R I F,L,R,Y,V

Position 1 2 3 4 5 6 7 8 9

– D,E,F P,L D,E,G N T D,E D,E,N,S,G

Figure 1.4-1: Binding motif of human TAP

Of a 9mer peptide (shaded rectangle), the N-terminal aa and the C-terminus (dark shading) are most

important for translocation by TAP. Please note that TAP can translocate longer peptides than the

9mer given in the example. However, it is always the N-terminal and C-terminal residues that decide

about affinity to TAP. Preferred (+) or disliked (-) aa residues at the indicated positions; bold residues

show the strongest effects. [The figure was adapted from Uebel and Tampe (1999).]
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1.4.2.2 To trim or not to trim, a nearly philosophical question

Previously, it was observed that proteasomes cleave out the exact MHC I ligand from

protein or peptide sequences, without aa extensions on either end of the fragment

(Wenzel et al., 1994; Dick et al., 1994; Dick et al., 1996; Niedermann et al., 1997).

However, this contradicts the requirement for ligands of certain MHC alleles to be

translocated as N-terminally extended precursors, as imposed by TAP specificity (see

1.4.2.1). Trimming of precursor peptides for MHC I ligands was already suggested 10

years ago (Falk et al., 1990). Later, when the first reports showed proteasome-

independent trimming of the extended N-termini of CTL epitopes, this was propagated by

some researchers in the field as a general mechanism. Experimental data available to

date indicate that proteasomes can contribute to the generation of MHC I ligands in three

different ways: A) They excise the final MHC I ligands by dominant cleavages (Lucchiari-

Hartz et al., 2000). B) They supply final MHC I ligands as side-products next to more

dominant N-terminal extensions (Dick et al., 1994; Groettrup et al., 1995; Niedermann et

al., 1995; Dick et al., 1996; Niedermann et al., 1996; Theobald et al., 1998). (C) They only

generate N-terminally extended precursor peptides of the MHC I ligand which are

subsequently trimmed by non-proteasomal activities in the cytoplasm or ER (Craiu et al.,

1997; Stoltze et al., 1998; Mo et al., 1999; Paz et al., 1999). Several cytosolic proteases

have been suggested to serve as trim-peptidases: the IFN-γ-inducible leucine

aminopeptidase (LAP, Beninga et al., 1998), tripeptidyl-peptidase II (TPPII, Geier et al.,

1999) and bleomycin hydrolase and puromycin-sensitive aminopeptidase (BH, PSA,

Stoltze et al., 2000b). An early report proposing C-terminal trimming in the ER has not

been supported by additional data (Elliott et al., 1995).

Taken together, these data strongly indicate that the C-termini of MHC I ligands must be
generated by proteasomes.

1.5 The Prediction of CTL Epitopes

Many immunologists are searching for CTL epitopes that could be beneficial in prevention

and therapy of infectious diseases or cancers. The search usually involves the prediction

of protein sequences that are likely to bind to MHC I molecules and therefore to activate

the cellular immune response. Different approaches for the prediction of MHC I ligands

exist, all of them based on peptides eluted from MHC I molecules. Two methods deduce

from the aa sequences of known MHC I ligands either minimal matrices (Rammensee et
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al., 1999; www.syfpeithi.de) or more intricate neural networks (Honeyman et al., 1998;

Brusic et al., 1998) for prediction; another draws on structural features of known MHC I

ligands (Schueler-Furman et al., 2000). The prediction of MHC I ligands is reasonable for

two reasons: (A) Binding to MHC I constitutes one of the most downstream and strictest of

several selection criteria for CTL epitopes; (B) the binding motifs of MHC I molecules

follow comparatively simple rules that can easily serve as the basis for prediction.

However, the prediction of MHC I ligands still yields many false-positives. As a

consequence, the synthesis of the peptides and subsequent MHC I binding studies are

indispensable. But there still remains the possibility that the peptides emerging from this

refined testing are not generated by proteasomes in vivo. It should thus be possible to

narrow down the number of potential CTL epitopes by including proteasomal cleavage
preferences into the prediction.

Therefore, several research groups are struggling to develop automated prediction tools

for proteasomal cleavages. A group in Berlin published the first prediction algorithm: It

was based on the experimental cleavage data of only seven naturally occurring peptides,

compiled from different literature sources and thus comprising a small and heterogeneous

data set (Holzhütter et al., 1999). Lately, a refined kinetic model was published by the

same group (Holzhütter and Kloetzel, 2000). We ourselves have only recently created an

algorithm based on proteasomal cleavages in enolase. This algorithm uses simple rules to

model proteasomal cleavage behavior and is able to predict cleavages in any protein

sequence with some accuracy (Kuttler et al., 2000; for details see 2.2). We have just now

incorporated the algorithm into a World Wide Web (www)-site: www.paproc.de, the first

publicly available proteasomal cleavage predictor (for details see 2.4). At least two more

research groups are currently developing proteasomal cleavage predictors: A group in

Leiden, The Netherlands, will link the characteristics of proteasomal cleavage sites with

those of CTL epitopes for more accurate prediction (F. Ossendorp, C. Melief, personal

communications). Researchers in Copenhagen, Denmark, in collaboration with us, have

generated neural networks for proteasomal cleavage prediction (C. Kesmir, S. Brunak,

personal communications). They are based on both the sequences of MHC I ligands and

our proteasomal cleavage data. A group in Berlin will try to link MHC I ligand prediction

and proteasomal cleavage prediction, again, in collaboration with us and based on already

available programs (H. Mollenkopf, personal communications).

The prediction of TAP-binding peptides has only been attempted ones using neural

networks (Daniel et al., 1998). This approach has not been followed up. It is conceivable

that the prediction of CTL epitopes might benefit from including TAP specificity into the

http://www.paproc.de/
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selection criteria. However, considering the broad specificity of TAP and the scarcity of

experimental data, it might be premature to incorporate TAP in such a prediction method.

1.6 Goal and Experimental Outline of the Thesis Project

The goal of my thesis project was the characterization of proteasomal cleavage
preferences in whole protein digests. The large amount of data we hoped to collect was

to be used for the development of a prediction device for proteasomal cleavages,

analogous to the database SYFPEITHI (www.syfpeithi.de), a widely-used public predictor

for MHC I binding peptides that was created in our institute (Rammensee et al., 1999).

The basis for my Ph.D. thesis project was already laid during my diploma thesis project

(April-Dec. 1997) when I screened for proteins that - despite of the aforementioned

experimental obstacles (see 1.3.8) - could be degraded in vitro by purified 20S

proteasomes from yeast. I found yeast enolase-1 to be a promising candidate. This 436

aa protein turned out to be a sound model substrate: Enolase represents in all aspects (aa

composition, structure, charge, etc.) a typical and thus representative protein according to

the SAPS database (Brendel et al., 1992). At the same time we received wild-type (wt)

and mutant yeast 20S proteasomes through collaborations with the groups of Drs Wolf

(Inst. for Biochemistry, University of Stuttgart) and Huber (MPI for Biochemistry,

Martinsried). These yeast proteasomes were initially characterized using as substrates

fluorogenic peptides and natural peptides harboring MHC I ligands and CTL epitopes (see

2.1, published in Dick et al., 1998). I started the first enolase digestion experiments

simultaneously and, at the end of my diploma thesis time (i.e. at the beginning of my

Ph.D. thesis time), enolase digestion experiments using all available yeast 20S
proteasomes had been performed, but still awaited their biochemical analysis.

The experimental course of events was as follows: Yeast enolase-1, as model substrate,

was incubated with purified 20S proteasomes from yeast or human cells. The enolase

fragments that were generated by proteasomal degradation were subsequently analyzed

by biochemical methods (HPLC fractionation, Edman sequencing and mass

spectrometry). The identified enolase fragments defined the location of proteasomal

cleavage sites. Both types of information were compiled graphically into so-called

cleavage maps. Simple counting and complicated statistical analysis (hypergeometric

distribution, Student’s t-test, Chi2-test) of fragments, fragment lengths and, most

importantly, cleavage sites allowed us to determine the cleavage preferences for all

proteasome species studied. Systematic analysis of the aa sequences flanking cleavage
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sites led to the identification of features in the substrate sequence (cleavage motifs)

that are crucial for cleavage site selection by proteasomes (see 2.2, published in
Nussbaum et al., 1998, and 2.5, Toes et al., submitted for publication).

My experimental data were used – in a close and fruitful collaboration with the Department

for Biomathematics at the University of Tübingen (Prof. K.P. Hadeler and Dr. C. Kuttler) –

as training data for computer algorithms modeling proteasomal cleavages. These

algorithms were finally tied into a publicly available www-site named PAProC, for

'Prediction Algorithm for Proteasomal Cleavages', that is already being accessed by many

researchers world-wide (see 2.3, Kuttler et al., 2000, and 2.4, Nussbaum et al., in press).
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2 Results

2.1 Contribution of proteasomal ββββ-subunits to the cleavage of
peptide substrates analyzed with yeast mutants

2.1.1 Summary

Proteasomes generate peptides that can be presented by MHC class I molecules in

vertebrate cells. Using yeast 20S proteasomes carrying different inactivated β-subunits we

investigated the specificities and contributions of the different β-subunits to the

degradation of polypeptide substrates containing MHC class I ligands and addressed the

question of additional proteolytically active sites apart from the active β-subunits. We find

a clear correlation between the contribution of the different subunits to the cleavage of

fluorogenic and long peptide substrates, with β5/Pre2 cleaving after hydrophobic, β2/Pup1

after basic and β1/Pre3 after acidic residues, but with the exception that β2/Pup1 and

β1/Pre3 can also cleave after some hydrophobic residues. All proteolytic activities

including the "branched chain amino acid preferring" (BrAAP) component are associated

with either β5/Pre2, β1/Pre3 or β2/Pup1, arguing against additional proteolytic sites.

Because of the high homology between yeast and mammalian 20S proteasomes in

sequence and subunit topology and the conservation of cleavage specificity between

mammalian and yeast proteasomes our results can be expected to also describe most of

the proteolytic activity of mammalian 20S proteasomes leading to the generation of MHC

class I ligands.

2.1.2 Introduction

The 20S proteasome, a threonine protease (Seemüller et al., 1995) and member of the

Ntn-amidohydrolase family (Brannigan et al., 1995), is the central component of the non-

lysosomal proteolytic system in eukaryotes. It is not only involved in general protein

catabolism but also in major regulatory processes such as cell cycle control and signal

transduction pathways (Hochstrasser, 1995; Coux et al., 1996; Hilt and Wolf, 1996). In

vertebrates the proteasome additionally caters to the immune system: peptides generated

as degradation products are delivered to MHC class I molecules for presentation on the

cell surface (Lehner and Cresswell, 1996). Although localized in the cytosol and

nucleoplasm, the proteasome appears to be responsible for ER-associated protein

degradation as well (Hiller et al., 1996; Wiertz et al., 1996; Sommer and Wolf, 1997).
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The cylindrical 20S proteasome is composed of four longitudinally stacked heptameric

rings. The two outer rings are made up of α-subunits and connect the 20S particle to

supplementary complexes, most notably the 19S cap and the IFNγ-inducible PA28αβ

complex. The 19S cap complex confers specificity for ubiquitinated substrates (Hilt and

Wolf, 1996). The PA28αβ complex appears to be an immunological adaptation,

modulating the cleavage mechanism and improving the yield of antigenic peptides (Dick et

al., 1996; Groettrup et al., 1996).

The two inner rings, composed of β-subunits, harbor the catalytically active subunits,

displaying their active sites on the inner surface of the central tunnel. Most β-subunits are

generated from precursors that undergo N-terminal processing during proteasome

assembly (Seemüller et al., 1996). Three of the mature subunits (MB1, δ and Z in human;

β5/Pre2, β1/Pre3 and β2/Pup1 in yeast) are proteolytically active and carry an amino-

terminal threonine residue as the catalytic nucleophile (Fenteany et al., 1995; Groll et al.,

1997; Heinemeyer et al., 1997; Arendt and Hochstrasser, 1997). Some of these critical

Thr residues can be covalently modified by the proteasome-specific inhibitor lactacystin

(Fenteany et al., 1995). In higher vertebrates, the cytokine IFNγ induces the expression of

three additional active proteasome subunits, LMP7, LMP2 and MECL1, which replace

their constitutive counterparts MB1, δ and Z, respectively (Savory et al., 1993; Reidlinger

et al., 1997; Hisamatsu et al., 1996). However, how these exchanges modulate

proteasome function and specificity is still poorly understood.

Biochemical studies on the specificity of the 20S proteasome led to the description of

three distinct proteolytic components, designated as the chymotrypsin (CT)-like, trypsin

(T)-like and peptidylglutamyl-peptide hydrolyzing (PGPH) activities. Recent studies

confirmed that the yeast homologues of MB1, Z and δ are the only active subunits with a

functional N-terminal Thr nucleophile (Heinemeyer et al., 1997; Arendt and Hochstrasser,

1997) and represent the above mentioned three classical activities, as defined with certain

fluorogenic model substrates.

However, some biochemical studies also pointed towards the existence of additional

proteolytic components within the proteasome (Orlowski et al., 1993): one of those, the

so-called "branched chain amino acid preferring" (BrAAP) component, cleaving after Leu

in certain model substrates, was also assumed to represent the major protein degrading

activity of the proteasome (Pereira et al., 1992). The existence of such additional activities

was concluded from inhibitory studies. While the cleavage of fluorogenic substrates
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representing the three classical activities could be inhibited with the general serine

protease inhibitor 3,4-dichloroisocoumarin (DCI), the same treatment led to an increased

turnover of certain other substrates, defined to represent the BrAAP component (Orlowski

et al., 1993; Cardozo et al., 1992). Using more specific inhibitors evidence was provided

that the BrAAP and the PGPH-activity might be related to each other (Cardozo et al.,

1996; Vinitsky et al., 1994). More recently, the arrangement of the intermediately

processed β7/Pre4 and β6/C5 propeptides in the crystal structure of the yeast 20S

proteasome led to the postulation of an additional catalytic activity, not related to the Thr

sites and possibly involved in the processing of the β-subunit propeptides (Groll et al.,

1997).

In this study we investigated whether the specificities defined with small fluorogenic

substrates do reflect truly distinct catalytic sites and how these specificities relate to the

cleavages that can be observed in peptide substrates containing known MHC class I

ligands. In addition, we addressed the question of additional proteolytically active sites

associated with the yeast 20S proteasome by analysis of the BrAAP component.

Using highly purified wt and mutant yeast proteasomes and several inhibitors of the

proteasomal activities, we examined the cleavage specificity of the three active subunits

towards short fluorogenic peptides as well as peptide substrates derived from the murine

JAK1 tyrosine kinase, the pp89 protein from murine cytomegalovirus (MCMV) and the

nucleoprotein (NP) from Influenza A/PR/8/34. We found that all observed cleavages could

be correlated to the three known active sites showing that no additional proteolytic activity

exists within the yeast 20S proteasome for the given set of substrates. Furthermore, we

found that the specificities of the different subunits towards fluorogenic substrates are

mainly identical to those observed for peptide substrates with few, but notable exceptions.

This allows now the clear association of certain cleavage events within peptide substrates

with certain β-subunits and therefore an assessment of the contribution of the different β-

subunits to the generation of proteasomal degradation products.

The 20S proteasomes from yeast and higher eukaryotes are highly homologous. As

shown in this paper and recently by Niedermann et al. (Niedermann et al., 1997), most

cleavage sites in peptides and proteins are conserved between yeast and man. It is

therefore very likely that results obtained with the yeast proteasome will improve our

understanding of vertebrate proteasome function and specificity and consequently of its

role in the generation of CTL epitopes.
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2.1.3 Materials & Methods

2.1.3.1 Generation of yeast 20S proteasome mutants

The generation of mutant strains YUS4 (pup1-T1A), YUS1 ( pre3-T1A) YUS5 (pup1-T1A

pre3-T1A) and YWH23 (pre2-K33A) (numbering refers to amino acid positions in mature

subunits) have been described recently (Heinemeyer et al., 1997). Wild-type yeast cells
were as described (Groll et al., 1997).

2.1.3.2 Purification of proteasomes

The purification of 20S proteasomes from S. cerevisiae has been described recently (Groll

et al., 1997). The same procedure was applied to the purification of the various mutant
proteasomes.

2.1.3.3 Measurement of proteasomal activities against substrates with fluorogenic

leaving group

Fluorogenic substrates Benzyloxycarbonyl-Gly-Gly-Leu-7-Amino-4-methylcoumarin (Z-

GGL-AMC), Succinyl-Leu-Leu-Val-Tyr-7-Amino-4-methylcoumarin (Suc-LLVY-AMC),

Benzyloxycarbonyl-Ala-Arg-Arg-7-Amino-4-methylcoumarin (Z-ARR-AMC) and

Benzyloxycarbonyl-Leu-Leu-Glu-β-Naphthylamide (Z-LLE-βNA) (all purchased from

Bachem, Heidelberg) were prepared from 10mM stocks in DMSO. Typically 1µg of

proteasome (with and without inhibitors) was incubated in a 100µM substrate solution.

Fluorescence of the leaving group was determined after incubation times of 1-5 h with a

Millipore spectrophotometer at 380nm excitation and 440nm emission for AMC and at

330nm excitation and 410nm emission for βNA.

2.1.3.4 Inhibitors

Lactacystin was purchased from E. J. Corey (Harvard University), 3,4-dichloroisocoumarin

(DCI) and Calpain Inhibitor I (LLnL) were from Sigma.

2.1.3.5  Measurement of non-fluorogenic leaving group by azo coupling

The BrAAP substrate Z-GPALA-p-benzoic acid was a gift from Dr. M. Orlowski (Mount

Sinai, New York). It was incubated in 100mM Tris pH 8.0 at a final concentration of 1mM

together with 1µg of proteasome, in the presence or absence of 0.01 units

Aminopeptidase M (Sigma). The reaction was stopped by addition of one reaction volume

10% trichloroacetic acid and developed by sequential addition of 2 volumes 0.1% NaNO2
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(in 1N HCl), 2 volumes 0.5% Ammoniumsulfamate (in 1N HCl) and 4 volumes 0.05% N-

Naphthylethylendiamine (in 95% ethanol). In the course of the development reaction an

azo dye is generated from free p-Amino-Benzoic acid. The extinction of the dye is
measured at 545nm.

2.1.3.6 Determination of proteasomal cleavages in unmodified 19-25mer peptides

Peptides were synthesized on an ABI 432A (Applied Biosystems, Weiterstadt, Germany)

automated peptide synthesizer applying Fmoc chemistry and purified by RP-HPLC

(Beckman, System Gold). Incubations of 1µg proteasome with peptide substrates at a

final concentration of 50µM were performed at 37°C in a total volume of 300µl assay

buffer (20mM HEPES/KOH pH 7.8; 2mM MgAc2; 1mM DTT).

2.1.3.7 Separation of cleavage products and online analysis by mass spectrometry

Proteasome digests were analyzed with two different LC-MS systems. In case of the first

system, aliquots of 40µl were loaded by autosampler (CTC A200S) and separated by

HPLC (Sykam, Gilching, Germany), equipped with a µRPC C2/C18 SC 2.1/10 column

(Pharmacia, Freiburg, Germany). Eluent A: 0.05% TFA; Eluent B: 80% Acetonitrile

containing 0.055% TFA. Gradient: 23-63% B in 20 min; Flow rate: 50µl/min, gradient

started 5 min after sample injection. Analysis was performed on-line by a tandem

quadrupole mass spectrometer (TSQ 700; Finnigan MAT, Bremen, Germany) equipped

with an ESI-F electrospray ion source. Each scan was acquired in centroid mode over the

range m/z 300-2200 in 3 seconds.

In case of the second LC-MS system, aliquots of 5µl were separated by HPLC (ABI 140D

solvent delivery system), equipped with a 300µm C18 RP column (Gromsil, Grom,

Herrenberg, Germany). Eluent A: 4mM NH4Ac, adjusted to pH3 with formic acid; Eluent B:

2mM NH4Ac in 70% Acetonitrile, adjusted to pH3 with formic acid. Gradient: 20-75% B in

25 min; Flow rate after pre-column split: 6µl/min. Analysis was performed on-line by a

hybrid quadrupole orthogonal acceleration time of flight mass spectrometer (Q-TOF;

Micromass, Manchester, UK) equipped with an electrospray ion source. Each scan was
acquired over the range m/z 400-1500 in 3 seconds.

Peptides were identified by their molecular mass. Additionally, the identity of main

cleavage products was confirmed by fragmentation with argon atoms in ms/ms

experiments. For relative quantitation of single molecular species integrated ion currents

were calculated and compared.
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2.1.4 Results

2.1.4.1 Cleavage of small fluorogenic substrates

Cleavage of the standard fluorogenic substrates GGL, ARR and LLE has been shown

recently to be subunit-specific (Heinemeyer et al., 1997). Using for the first time yeast

proteasome preparations, we repeated the cleavage of fluorogenic peptides to test the

reproducibility of the results in our experimental setup. As expected, the GGL-cleaving

activity, defined to represent the chymotrypsin-like activity, is clearly correlated with the

β5/Pre2 site: Cleavage of the Z-GGL-AMC substrate is only present in those mutants that

retain a functional β5/Pre2 subunit and absent in pre2-K33A mutant proteasomes (Figure

2.1-1A). Identical results were obtained with the Suc-LLVY-AMC substrate (data not

shown). The ARR cleaving activity, defined to represent the trypsin-like activity, depends

on a functional β2/Pup1 site: The cleavage of Z-ARR-AMC is not observed in the

β2/Pup1-mutated proteasomes from the pup1-T1A and pup1-T1A pre3-T1A strains, but in

all other mutants (Figure 2.1-1B). Correspondingly, β1/Pre3 is responsible for the PGPH-

like activity: The Z-LLE-βNA substrate is not cleaved in the double mutant pup1-T1A pre3-

T1A and only cleaved weakly in the pre3-T1A single mutant (Figure 2.1-1C).

The increased activities of some mutant proteasomes compared to wild-type particles are

hard to explain but might be caused by the lack of competition from inactivated subunits

for substrate molecules or by an alosteric activation of the remaining active β-subunits by

the presence of propeptide remnants still associated with the inactivated β-subunits. In

conclusion, the three standard fluorogenic substrates can be used as subunit-specific

functional markers. We therefore decided to test the influence of several inhibitors on the

proteolytic activity of yeast 20S wt and mutant proteasomes.
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Figure 2.1-1: Comparison of the ability of wild-type and mutant yeast proteasomes (β2/β2/β2/β2/Pup1-,

ββββ1/Pre3-, ββββ2/Pup1-ββββ1/Pre3- and ββββ5/Pre2-) to catalyze the release of fluorogenic leaving groups

from three different substrates (Z-GGL-AMC, Z-ARR-AMC and Z-LLE-ββββNA) in the absence of
inhibitors (A, B, C), in the presence of 1mM lactacystin (LC) (D, E, F) and in the presence of
1mM LLnL (G, H, I).

The same amount of proteasome (1µg) was used in each incubation. Substrates were added after an

inhibitor preincubation time of 45 min. Units of fluorescence are drawn to scale arbitrarily. wt, wild-

type yeast proteasome.

2.1.4.2 Proteasome subunits are differentially inhibited by lactacystin, LLnL and DCI

It has been reported previously that the bovine proteasomal subunits corresponding to

yeast β5/Pre2 and β2/Pup1 (Fenteany et al., 1995) or all six human active β-subunits

(Craiu et al., 1997) are inhibited by lactacystin due to covalent binding to the N-terminal

threonine. Soaking of yeast 20S proteasome crystals resulted only in a covalent

modification of the β5/Pre2 subunit (Groll et al., 1997). In our hands, pretreatment of

proteasomes with 1mM lactacystin for 45 min led to absolute inhibition of GGL and ARR

cleaving activity (Figure 2.1-1D and E), but did not have an inhibitory influence on the

LLE-cleaving activity (Figure 2.1-1F). Preincubation of proteasomes with 1mM LLnL for 45

min reduced GGL cleavage by ca. 90% (Figure 2.1-1G), but to our surprise did not

significantly influence cleavage of the ARR and LLE substrates (Figure 2.1-1H and I),
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despite the fact that the same concentration covalently modified β5/Pre2, β1/Pre3 and

β2/Pup1 in wt 20S yeast proteasome crystals (Groll et al., 1997). Given the established

specificities of the different subunits for the fluorogenic substrates, this finding shows that

in our setup the β5/Pre2 catalytic site can be inhibited by both lactacystin and LLnL,

β2/Pup1 only by lactacystin and β1/Pre3 by neither lactacystin nor LLnL. The vastly

different sensitivity of the proteasomal activities towards lactacystin and LLnL was also

observed in inhibitor titration experiments (data not shown). Possible explanations for the

apparent difference to the crystal structure data, which showed occupation of all active

sites by LLnL and occupation of only β5/Pre2 by lactacystin, will be discussed.

Figure 2.1-2: Influence of 1mM DCI on wt and mutant yeast proteasomes

Incubation time: 2h (open bars: without inhibitor; crosshatched bars: with inhibitor). Substrates were

added after an inhibitor preincubation time of 45 min. The influence of the inhibitor on the β5/Pre2

subunit is shown with GGL (A), on the β2/Pup1 subunit with ARR (B) and on the β1/Pre3 subunit with

LLE (C).

The third inhibitor tested in our study is 3,4-dichloroisocoumarin (DCI). While yeast

β5/Pre2 is clearly sensitive to inactivation by DCI after an 45' incubation, β1/Pre3 is only

weakly affected by DCI concentrations of even 1mM and β2/Pup1 is not affected at all

(Figure 2.1-2). This result is in line with the observation that the three activities in the

bovine pituitary proteasome are inactivated with widely differing rate constants (CT-like >

PGPH-like > T-like) (Orlowski and Michaud, 1989). However, it has also been reported for

the bovine pituitary proteasome that all three classical activities can be inactivated with

micromolar concentrations of DCI and short incubation times (Orlowski et al., 1993). This

cannot be confirmed in our experiments with yeast wt and mutant proteasomes. To inhibit

β1/Pre3 by 50%, the yeast proteasomes had to be pre-incubated in 100µM DCI for 90
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minutes. Lower DCI concentrations or shorter pre-incubation times did not significantly

affect the β1/Pre3 activity (data not shown).

2.1.4.3 "BrAAP" activity as measured with the Z-GAPLA-pAB substrate is catalyzed by

the β1/Pre3 active site

Micromolar concentrations of DCI have been shown to activate an additional proteolytic

component of bovine 20S proteasomes, the "branched chain amino acid preferring"

(BrAAP) component (Orlowski et al., 1993). We therefore tested whether this activity is

also present in yeast 20S proteasomes. The existence of mutant yeast proteasomes gave

us the unique possibility to test whether or not this component, if present, can be

associated with one of the three active β-subunits or whether it represents an additional,

so far unrecognized, active site.

Using the assay introduced by Orlowski et al. to measure the BrAAP activity of the

proteasome (Orlowski et al., 1993), the Z-GPALA-pAB substrate was incubated with the

different yeast proteasome preparations. Generation of the leaving group (pAB) in the

absence of aminopeptidase M (APM) reflects direct cleavage after the C-terminal alanine,

while the liberation of additional pAB in the presence of APM was described as cleavage

after the penultimate leucine residue, generating Ala-pAB in the first place. The cleavage

after Leu is thought to represent the so-called BrAAP activity. Significant BrAAP activity

was found in all proteasome preparations but the one with an inactivated β1/Pre3 subunit.

Here, the addition of aminopeptidase M does not lead to release of additional pAB (Figure

2.1-3C) indicating that cleavage after leucine in the GPALA substrate is catalyzed by the

β1/Pre3 subunit. On the other hand, cleavage after alanine is clearly independent of

β1/Pre3 (Figure 2.1-3C) and can be attributed to β5/Pre2 or β2/Pup1. The finding that the

BrAAP activity is performed by β1/Pre3 is also supported by the fact that this activity

cannot be inhibited by lactacystin, found previously not to influence β1/Pre3 activity

against LLE (Figure 2.1-1F, Figure 2.1-3A, B, D (+APM, +LC)).
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Figure 2.1-3: BrAAP activity of wt and mutant yeast proteasomes

Release of p-aminobenzoic acid from Z-GPALA-pAB as measured by azo coupling with wt (A) and

mutant (B, C, D) proteasomes, with (+APM, hatched bars) and without (-APM) aminopeptidase M,

with (+LC) and without (-LC) lactacystin.

2.1.4.4 Analysis of the degradation of peptide substrates

Most cleavages in long peptide substrates occur after hydrophobic (F, Y, I, L), basic (R, K)

and acidic (D, E) residues (see below), a situation similar to the cleavage of fluorogenic

substrates, which have been related to chymotrypsin-like, trypsin-like and PGPH-like

activities in the proteasome. To investigate whether these cleavages are catalyzed by

three non-overlapping and separate activities, we digested three different peptides with

yeast wt proteasome and the four different yeast mutant proteasome preparations

containing the inactivated β-subunits β2/Pup1-, β1/Pre3-, β2/Pup1-β1/Pre3- and β5/Pre2-.

Products were separated and analyzed by LC-MS. Three typical sets of HPLC profiles

displaying integrated ion currents for the masses of particular degradation products are
shown in Figure 2.1-4.
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Figure 2.1-4: Three examples of HPLC profiles displaying integrated ion currents for the
masses of particular degradation products.

(A) Degradation product 14-17 (ALVR) from the Influenza NP peptide is only generated by

proteasomes with a functional β2/Pup1 subunit. (B) Product 1-6 (HSNLND), also from the Influenza

peptide, is mostly dependent on a functional β1/Pre3 site. (C) Product 8-15 (PHFMPTNL) from the

pp89 peptide depends on the presence of β5/Pre2. wt, wild-type yeast proteasome.

We limited ourselves to the interpretation of only those cleavages showing a dramatic

reduction or complete absence in digestions using mutant proteasomes and avoided to

compare relative amounts of fragments generated under the influence of different

proteasome mutants. The reason for this is that many peptide fragments generated are

intermediate products and subject to further degradation. For quantitative analysis one

would have to consider consecutive cleavages, stabilizing or destabilizing the fragment

under consideration. This kind of analysis would go far beyond the aim of this study.

However, it is possible to recognize a strong requirement for a certain subunit in those

cases where corresponding mutants exhibit no or greatly reduced product formation
(compare Figure 2.1-4).

2.1.4.5 Degradation of the JAK1-21mer peptide

The JAK1-21mer peptide is part of JAK1 tyrosine kinase and contains the MHC class I

ligand SYFPEITHI (Harpur et al., 1993). Incubation of this peptide with mammalian

proteasomes leads to efficient generation of the MHC I ligand (Dick et al., 1996;

Niedermann et al., 1997), which is flanked by two dominant cleavage sites after F7 and I16,
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respectively. The same two cleavages are efficiently catalyzed by the yeast

proteasome, in addition to minor cleavages which are also conserved between the

mammalian and yeast systems. However, the yeast enzyme additionally cleaves after H15,
a cleavage not observed in digests with the mammalian proteasome (Figure 2.1–5).

Cleavage after F7 is β5/Pre2-dependent, since generation of fragments 1-7 and 8-21 is

nearly absent in β5/Pre2-defective proteasomes (Figure 2.1–5A, B). Cleavage after I16 is

also catalyzed by the β5/Pre2 subunit: generation of the fragment 17-21 is nearly missing

in digests with β5/Pre2-deficient proteasomes Figure 2.1–5C). Correspondingly, a

functional β5/Pre2 subunit is necessary and sufficient for the generation of SYFPEITHI (8-

16): β2/Pup1-β1/Pre3- double mutants (which only carry functional β5/Pre2 subunits)

efficiently generate SYFPEITHI, while β5/Pre2- mutants do not generate any detectable

amount (Figure 2.1–5D). The observation that the formation of fragments 1-7, 8-16 and 8-

21 can be completely inhibited with lactacystin (Figure 2.1–5G-I) is in agreement with an

essential role of β5/Pre2 and indicates that β1/Pre3 does not perform this cleavage.

Cleavage after H15 is only detected in mutants with a functional β2/Pup1 subunit, as

demonstrated for fragment 16-21 (Figure 2.1–5E). Cleavage after Y9, leading to FPEITHI

(10-16) in the mammalian system (Dick et al., 1996), also takes place in the yeast system,

albeit much weaker. The minor product FPEITH (10-15) is an example for a fragment that

depends on two different functional subunits: β5/Pre2 for the N-terminal cleavage and

β2/Pup1 for the C-terminal cleavage. Correspondingly, fragment 10-15 is only formed in

digests with proteasomes that contain both β5/Pre2 and β2/Pup1 (Figure 2.1–5F).

2.1.4.6 Degradation of the pp89-25mer peptide

The pp89-25mer peptide is derived from the MCMV pp89 IE-protein and contains the Ld-

presented CTL epitope YPHFMPTNL (Del Val et al., 1991). In digests with the mammalian

proteasome two main products are generated: 8-15 and 5-15, the latter one being a

candidate precursor peptide for the CTL epitope (Dick et al., 1996). Again, the same

dominant cleavage sites and many of the sub-dominant ones are also used by the yeast

enzyme (Figure 2.1–7).
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Figure 2.1-5: Summary of cleavage sites in the JAK1-21mer peptide as digested with the yeast
20S proteasome (top) and data explaining the correlation between cleavages and proteasome
subunits (bottom).

A-F: Integrated ion currents from mass spectrometry for the main peptide products generated from

the JAK1 peptide after 8h incubation with five different proteasome preparations (wild-type (wt),

β2/Pup1-, β1/Pre3-, β2/Pup1-β1/Pre3- and β5/Pre2-). G-I: Relative inhibition of product formation by

lactacystin (LC) (% of product formed without LC) based on integrated ion currents from LC-MS.
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Figure 2.1-6: Summary of cleavage sites in the pp89-25mer peptide as digested with the yeast
20S proteasome (top) and data explaining the correlation between cleavages and proteasome
subunits (bottom).

A-L: Integrated ion currents for the main peptide products generated from the pp89 peptide after 4h

incubation with five different proteasome preparations (wild-type (wt), β2/Pup1-, β1/Pre3-, β2/Pup1-

β1/Pre3- and β5/Pre2-). M-P: Four examples for the influence of lactacystin (LC) on product formation

by the yeast wt proteasome.
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Cleavage after Y4 is essentially β5/Pre2-dependent, since formation of products 1-4 and

5-25 is only present in minimal amounts in β5/Pre2-defective proteasomes (Figure 2.1-6A

and B), and the generation of fragment 1-4 can be inhibited by lactacystin (Figure 2.1-6O).

However, the situation is more complicated for the cleavage after Y7, which takes places

in all mutants tested (Figure 2.1-6C and D). This observation can be explained only if two

different subunits effectively catalyze the same cleavage. The β5/Pre2 subunit is clearly

capable of performing the cleavage, since it takes place efficiently in the β2/Pup1-

β1/Pre3- double mutant. This leads to the question which subunit catalyzes the same

cleavage in the β5/Pre2-defective mutant. Since formation of fragment 8-25 is only weakly

inhibited by lactacystin (Figure 2.1-6P), which affects only β5/Pre2 and β2/Pup1, we

conclude that β1/Pre3 contributes to this cleavage. It should be noted that cleavage after

Y4 is also, but to a much lesser extent, catalyzable by β1/Pre3, explaining the residual

activity observed with β5/Pre2- mutants.

Cleavage after L15 is strictly β5/Pre2-dependent, since all products that terminate in L15

are only observed in the presence of proteasomes with active β5/Pre2 subunits.

Prominent examples are the main products 5-15 and 8-15 (Figure 2.1-6E and F), as well

as fragment 16-25 (Figure 2.1-6G). A rather weak cleavage after M11 is also observed and

is mainly β5/Pre2-dependent (Figure 2.1-6H and I). Cleavage after D5 is almost absolutely

β1/Pre3-dependent (Figure 2.1-6J and K) and therefore not sensitive to lactacystin (Figure

2.1-6M and N). Cleavage after K20 is absolutely β2/Pup1-dependent: fragment 21-25 only

appears when proteasomes with a functional β2/Pup1 subunit are used (Figure 2.1-6L).

2.1.4.7 Degradation of the Influenza NP 24mer peptide

The 24mer peptide from Influenza nucleoprotein contains the Kd-restricted ligand and CTL

epitope TYQRTRALV (147-155) (Rötzschke et al., 1990). Digests with the mammalian

proteasome (unpublished data) confirmed a strong conservation of preferred cleavage

sites with the yeast 20S proteasome. Most dominant cleavage sites are clustered around

the C-terminus of the epitope, some of them destroying the MHC ligand (Figure 2.1–8).
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Figure 2.1-7: Summary of cleavage sites in the Influenza nucleoprotein 24mer peptide as
digested with the yeast 20S proteasome (top) and data explaining the correlation between
cleavages and proteasome subunits (bottom).

A-L: Integrated ion currents for the main peptide products generated from the influenza nucleoprotein

peptide after 2h incubation with five different proteasome preparations (wt, β2/Pup1-, β1/Pre3-,

β2/Pup1-β1/Pre3- and β5/Pre2-).

The overall degradation of the Influenza peptide is dominated by cleavages after arginine

residues, catalyzed by the β2/Pup1 subunit. Degradation of the substrate peptide (1-24) is

significantly retarded in digests with β2/Pup1-defective proteasomes (Figure 2.1–8A). The

most dominant cleavages after R13 and R17 are absolutely β2/Pup1-dependent (Figure

2.1–8B-E) and the same is true for the less pronounced cleavage after R11 (Figure 2.1–

8F). Interestingly, cleavage after A14 is also catalyzed by β2/Pup1, as shown for the

fragments 1-14 and 15-24, which are missing in digests using β2/Pup1-defective

proteasomes (Figure 2.1–8G and H).
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Cleavage after L15 is a more complicated matter. It is performed by all the mutants; the

data shown in Figure 2.1–8I favor the involvement of both β2/Pup1 and β5/Pre2 over

β1/Pre3. The fragment 1-6 is generated by a β1/Pre3 dependent activity cleaving after D

(Figure 2.1–8J). The cleavage after L4 is the most dominant site in the vicinity of the N-

terminus of the CTL epitope. Because of the dominant cleavages mediated by the

β2/Pup1 subunit (especially R13), fragment 5-24 is usually not observed in digests using

proteasomes with active β1/Pup1 subunits. Only in digests with β2/Pup1-defective

proteasomes this fragment can be detected (Figure 2.1–8K). A similar situation applies to

peptide NDATYQRTRALV (5-16) (Figure 2.1–8L), which is a potential precursor of the

CTL epitope TYQRTRALV (8-16). The formation of this peptide is strongly enhanced in

digests with 20S mutants lacking functional β2/Pup1. The finding that this fragment is

generated when mutants with inactive β2/Pup1, but active β5/Pre2 subunit are used

argues strongly for the involvement of β5/Pre2 in this cleavage event. This is also

supported by the result that cleavage after L4 is inhibited by lactacystin (data not shown).

2.1.5 Discussion

2.1.5.1 Cleavage specificity of the proteasomal subunits

Using short fluorogenic peptide substrates in combination with mutant proteasomes

lacking specific subunit activities we found a clear correlation between active subunits and

cleavage specificity. This finding supports the conventional belief that the three "classical"

fluorogenic substrates are cleaved by three different active sites in the proteasome

[β5/Pre2→ hydrophobic; β2/Pup1→ basic and β1/Pre3→ acidic] and can be used as

subunit-specific probes. However, the study of longer peptide substrates (21 to 25 aa) in

the same system led to more complex results: While the formula [β5/Pre2→ hydrophobic;

β2/Pup1→ basic and β1/Pre3→ acidic] can be applied to many of the cleavage sites,

there is a certain class of hydrophobic and small residues that does not obey this simple

rule. Evidence that the specificies of the different subunits might overlap was provided by

the group of Rivett before proteasomes carrying different inactived subunits have been

available. These experiments were performed with the help of inhibitors for the tryptic and

chymotryptic activities (Savory et al., 1993; Reidlinger et al., 1997). A special case is the

so-called BrAAP activity, cleaving after the hydrophobic residue leucine in the model

substrate GPALA, which can now be clearly attributed to β1/Pre3 (Figure 2.1-3) as

suggested previously (Cardozo et al., 1996; Vinitsky et al., 1994). The observed
specificities are summarized for the different subunits in the following paragraphs:
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β2/Pup1 proved to be responsible for all cleavages after basic residues (R, K) without

any exception. This result is in line with the observed specificity towards fluorogenic

substrates. However, β2/Pup1 is not absolutely limited to cleave after basic residues. A

cleavage after alanine was clearly identified as β2/Pup1-catalyzed (Figure 2.1–8G and H)

and there are indications for β2/Pup1-catalyzed cleavages after hydrophobic residues

(Figure 2.1–8I). Thus, β2/Pup1 is also (at least partially) responsible for cleavages after

small and hydrophobic amino acids.

β1/Pre3 catalyzed all observed cleavages after acidic residues (D, E). In addition, β1/Pre3

is responsible for the cleavage after leucine in the GPALA substrate, as mentioned above

(Figure 2.1-3C), and is involved in the cleavage after Y7 in the pp89 peptide substrate

(Figure 2.1-6C and D). This indicates a broader role of β1/Pre3 in cleavages after

hydrophobic residues.

β5/Pre2 is mainly responsible for cleaving after hydrophobic residues, as expected.

However, some of these cleavages are at the same time also catalyzed by β1/Pre3 or

β2/Pup1.

In conclusion, while cleavages after basic and acidic residues strictly correlate with

subunits β2/Pup1 and β1/Pre3, respectively, cleavages after hydrophobic residues can be

the result of β5/Pre2 alone or with contributions by the β1/Pre3 or, apparently to a lesser

extent, the β2/Pup1 subunit. Likewise, cleavage after small residues appears not to be

restricted to a single subunit.

This overlap might be explained by the contribution of the sequence context around

potential cleavage sites as a major factor in determining which subunit will preferentially

cleave after a certain hydrophobic or small residue (and also whether there is cleavage at

all after a suitable P1 residue). The number of cleavage sites analyzed in this study is too

small to make detailed predictions how flanking sequences guide the involvement of the

three active subunits in cleavages after certain residues. Recent results, however, namely

the extensive characterization of more than 400 degradation products from the 436 aa

protein yeast enolase-1 after digestion with wt and mutant yeast proteasomes, support the

assumption that the presence of certain amino acids in several positions around the P1

site strongly influences proteasomal cleavage activities (Nussbaum et al., manuscript in
preparation; see 2.2).
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2.1.5.2 Influence of inhibitors on distinct active sites

Inhibition studies with wt and mutant proteasomes provided evidence that under the

conditions used in our experiments lactacystin is an inhibitor of both the β5/Pre2 and

β2/Pup1 catalytic subunits, but not of the β1/Pre3 subunit, which is only inhibited after

longer preincubation times (> 4h) and at lactacystin concentrations >1mM (data not

shown). This preferential inhibition is in agreement with (Fenteany et al., 1995) who

described an irreversible inhibition of only chymotryptic and tryptic activities and (Craiu et

al., 1997) who showed that the cleavage after a glutamic acid residue (flanking the N-

terminus of the CTL epitope SIINFEKL) cannot be inhibited by lactacystin at a

concentration of 2µM. In crystal structural data of the yeast proteasome lactacystin was

found covalently associated with only the β5/Pre2 subunit (Groll et al., 1997). However,

the experimental conditions of crystal soaking are very different from those above and this

observation cannot exclude a weaker association with β2/Pup1, resulting in inhibition of

the proteolytic activity of this subunit. The preferential interaction of lactacystin with

β5/Pre2 and β2/Pup1 under the conditions used in our experiments proved to be very

helpful because it provided an additional tool to discriminate catalytic contributions made

by the subunits β5/Pre2 and β2/Pup1 versus β1/Pre3. For example, the use of lactacystin

confirmed the association of the BrAAP activity with β1/Pre3 (Figure 2.1-3) and the

contribution of β1/Pre3 to cleavage after the Y7 residue in the pp89 peptide substrate

(Figure 2.1-6P).

The finding that LLnL inhibits only β5/Pre2 in our hands, at concentrations where it

covalently modifies all three active β-subunits in the yeast crystal structure (Groll et al.,

1997), may be explained by the soaking condition of proteasome crystals. The incubation

with the inhibitor solution was performed for a much longer period of time (6h vs. 45').

Indeed, increasing the preincubation time of the inhibitor with proteasome to 90 minutes

resulted in partial inhibition of the β2/Pup1 and β1/Pre3 subunits at LLnL concentrations

>1mM (data not shown). In addition, hemiacetal formation between peptide aldehyde

groups and the active site threonine 1 Oγ may be favored under the conditions of

crystallization. A similar observation was made for the inhibition by DCI. Preincubations

for 45 min with DCI concentrations up to 5mM resulted only in the inhibition of β5/Pre2,

whereas a 90 min preincubation inhibited also β2/Pup1 and β1/Pre3 to 50% at 100µM and

90% at 1mM (data not shown).
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2.1.5.3 No additional catalytic sites in the yeast proteasome

Orlowski et al. (1993) biochemically defined  catalytic components distinct from the three

classical activities (CT-like, T-like and PGPH-like), one of them was called the "branched

chain amino acid preferring" (BrAAP) activity. This component was also assumed to

represent the "caseinolytic" activity of the proteasome (Pereira et al., 1992). Two other

additional, "non-classical" activities were identified and called the "small neutral amino

acid preferring" (SNAAP) (Orlowski et al., 1993) and acidic chymotrypsin-like (aCT-like)

activities (Figueiredo Pereira et al., 1995).

Testing the wt and mutant yeast 20S proteasomes for cleavage activity against the BrAAP

substrate Benzyloxycarbonyl-Gly-Pro-Ala-Leu-Ala-para-Aminobenzoic acid (Z-GPALA-

pAB) (Orlowski et al., 1993), we observed that the cleavage after the penultimate leucine

residue, defined to represent the BrAAP activity, is performed by β1/Pre3. This is evident

from the missing BrAAP activity in the β1/Pre3- mutant (Figure 2.1-3C) and in addition

from the remaining BrAAP activity of the β2/Pup1- and β5/Pre2- mutants in the presence of

lactacystin (Figure 2.1-3B and C), which inhibits β5/Pre2 and β2/Pup1, but not β1/Pre3

under the applied conditions (Figure 2.1-1F). The cleavage after the ultimate alanine

residue is catalyzed by β5/Pre2 and upon lack of β5/Pre2 or upon its preferential inhibition

by LLnL also by β2/Pup1 (data not shown). The cleavage after alanine is also lactacystin

sensitive (Figure 2.1-3A, B, D), supporting the view that either the β2/Pup1 or β5/Pre2

subunit is involved and not β1/Pre3, which is not inhibited by lactacystin under the applied

conditions (Figure 2.1-1F). The finding that the BrAAP component is not only insensitive

to, but even activated by DCI (Orlowski et al., 1993) might be explained by inhibition of the

β5/Pre2 subunit, otherwise competing with β1/Pre3 for the same substrate molecules. In

summary, we conclude that in our system no additional active site apart from the three

threonine protease catalytic centers is responsible for cleaving the GPALA substrate and

that, as defined by the GPALA substrate, β1/Pre3 represents the BrAAP component. No

evidence for additional activities could be found with any of the other substrates tested in

this study. Since the BrAAP or caseinolytic activity has been described as the most

significant among the additional activities, we regard it as unlikely that other putative

activities (SNAAP and aCT) will turn out to be catalyzed by some unconventional,

additional active site.

Since our evidence is based on wt and mutant proteasomes from yeast, we can not

definitely rule out that the bovine proteasomes used by Orlowski et al. (1993) do harbour
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activities that are distinct from the known threonine-type proteolytic subunits. However,

we regard this possibility as unlikely, for the following reasons: (i) proteasomes from yeast

and mammals are conserved in subunit structure and topology (Groll et al., 1997; Kopp et

al., 1997), as well as in cleavage specificity when tested with long peptide substrates

(Niedermann et al., 1997), (ii) yeast proteasomes were highly purified and homogenous in

subunit composition, while bovine proteasomes might represent a mixture of different

species including inducible subunits. This subunit heterogeneity might lead to

experimental complications; (iii) fluorogenic substrates used in our experiments were

shown to be cleaved by the yeast proteasome in a subunit-specific manner. It is still to be

shown that these and other fluorogenic substrates are cleaved in a strictly subunit-specific

manner by mammalian (bovine) proteasomes.

2.1.5.4 Generation of dual cleavage products

In this study we show that the cleavages generating the SYFPEITHI fragment from the

JAK1 peptide and the DMYPHFMPTNL fragment from the pp89 peptide are all performed

by the β5/Pre2 subunit. These results bear on previous experiments performed with

mammalian 20S proteasomes. There, we found that the generation of the same peptides

is boosted by the presence of PA28 (Dick et al., 1996). Meanwhile, this effect was

confirmed (Niedermann et al., 1997) and observed with additional peptide substrates

(Dick et al., unpublished data). In the absence of PA28, the N- and C-terminal cleavages

that generate an internal fragment occurred independently from each other and could be

outcompeted with excess substrate. Kinetics and competition experiments in the presence

of PA28 however indicated that the second cleavage did not take place independently

from the first cleavage (Dick et al., 1996). These observations led us to propose the model

where two concerted cleavages take place between two neighbouring subunits.

However, the crystal structure of the yeast proteasome made clear that the two β5/Pre2

subunits are not direct neighbours in the 20S particle and are also isolated from the

β1/Pre3 and β2/Pup1 subunits. An identical subunit topology is expected for the

mammalian proteasome (Kopp et al., 1997). Consequently, the positive influence of PA28

on the formation of internal fragments is unlikely to be based on a simultaneous cleavage

event performed by the β5/Pre2-corresponding subunits MB1/LMP7. Furthermore, the

distance from MB1/LMP7 to either Z/MECL1 or δ/LMP2 is too long to generate peptides of

9-11 amino acids by a simultaneous cleavage event. Whether or not β2/Pup1 (Z, MECL-1)

and β1/Pre3 (δ, LMP2), which are neighbours in the same β-ring, might be involved in the
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generation of internal fragments from peptide substrates under the influence of PA28

cannot be tested in the yeast system. No PA28-homologous protein is present in the yeast

genome and we could not find significant activation or modulation of the yeast proteasome

by human PA28 (data not shown). Studies with mammalian proteasomes and inhibitors at

conditions that selectively affect the different proteasomal activities are currently

performed to address the involvement of the neighbouring subunits Z/MECL-1 and

δ/LMP2 in the generation of internal fragments when PA28 is present. Of special interest

here is whether PA28 is able to influence the specificity of subunits Z/MECL-1 and

δ/LMP2 to allow a participation in cleavages after hydrophobic amino acids that might now

be able to generate the SYFPEITHI and the DMYPHFMPTNL fragments by a concerted

cleavage event. Our finding that β2/Pup1 and β1/Pre3 are able to cleave after

hydrophobic amino acids is in favor of this possibility.

Because we used peptide substrates of only up to 25aa in this study, we did not

investigate the length of the fragments generated from wild-type or mutant yeast

proteasomes in detail. It is however interesting to note that the size of internal fragments

generated from synthetic peptide substrates centers around seven amino acids and that

the average fragment length does not seem to differ between wild-type and mutant

proteasomes with fewer threonine active sites. This is of interest because some of us

(Löwe et al., 1995) had suggested that the distance between the subunits carrying the

threonine active sites corresponding to an octapeptide in extended conformation,

determines the length of fragments generated. The data here do not support this

hypothesis. Whether or not this model is correct will be answered by the detailed analysis

of proteasomal digestion products of the yeast enolase-1 protein, where more than 400

protein fragments, generated in digestions with yeast wild-type and mutant proteasomes,
were characterized (Nussbaum et al., manuscript in preparation; see 2.2 for details).

In addition, in the yeast proteasome, processing intermediates cleaved at residues -8 and

-9 of subunits β7/Pre4 and β6/C5 were observed in well defined conformations (Groll et

al., 1997). This led to the suggestion of the existence of an additional unspecific hydrolytic

site at the inner β-annulus of the proteasome. The results presented previously

(Heinemeyer et al., 1997) and here argue against this hypothesis. A reconsideration of the

hydrolytic activity at the inner β-annulus must await the results of the analysis of

processing intermediates in proteasomes with inactivated β-subunits which is on the way

(Groll et al., manuscript in preparation).

The analysis of the proteolytic activity of the yeast proteasomes also revealed that the
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dominant cleavage activity was performed by the β5/Pre2 subunit, generating

hydrophobic C-termini. This effect is even more enhanced by the contribution of the

β2/Pup1 and β1/Pre3 subunits to cleavages after hydrophobic residues as well. We are

aware of the fact the yeast 20S proteasomes lack the interferon-inducible β-subunits of

mammalian proteasomes. But there is no evidence that the presence of these subunits

does alter the specificity of the proteasome in a way that will induce the generation of new

cleavage sites. The only differences observed so far are changes in the quantity of

peptide fragments generated when proteasomes from interferon-induced or LMP2/LMP7

transfected cells were analysed (Niedermann et al., 1997; Groettrup et al., 1995).

Therefore, our results will describe most of the cleavage performed in mammalian

proteasomes as well and provide an explanation for the dominance of hydrophobic

residues at the C-termini of MHC class I ligands. Because the proteasome does not

cleave after every hydrophobic, basic or acidic amino acid however, there must be rules

that govern the selection of cleavage sites. These rules are not evident in the limited set of

data available here but will be looked for in the more than 400 fragments generated from

the yeast enolase-1 protein (Nussbaum et al., in preparation; see 2.2 for details). If it is

possible to identify rules that guide the interaction of substrate molecules with the

proteasome and therefore allow a partial prediction of protein processing, the forecast of

CTL epitopes, which so far is based on MHC ligand motifs only, will become much more

accurate. The knowledge of subunit contribution to the generation of CTL epitopes will

also be extremely useful for the development of subunit-specific proteasome inhibitors

that suppress the generation of some CTL epitopes, enhance the production of others but

do not affect the entire proteasomal activity.
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Z-GGL-AMC benzyl-oxycarbonyl-Gly-Gly-Leu-7-amino-4-methylcoumarin

Suc-LLVY-AMC succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin

Z-ARR-AMC benzyl-oxycarbonyl-Ala-Arg-Arg-7-amino-4-methylcoumarin

Z-LLE-β-NA benzyl-oxycarbonyl-Leu-Leu-Glu-β-napthylamide
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HPLC high pressure liquid chromatography

LC-MS liquid chromatography-mass spectrometry
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CTL cytotoxic T lymphocyte
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LC lactacystin
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2.2 The cleavage motifs of yeast 20S proteasomes deduced
from digests of enolase-1

2.2.1 Summary

The 436-amino acid protein enolase-1 from yeast was degraded in vitro by purified wild-

type and mutant yeast 20S proteasome particles. Analysis of the cleavage products at

different time points revealed a processive degradation mechanism and a length

distribution of fragments ranging from 3-25 amino acids with an average length of 7 to 8

amino acids. Surprisingly, the average fragment length was very similar between wt and

mutant 20S proteasomes with reduced numbers of active sites. This implies that the

fragment length is not influenced by the distance between the active sites, as previously

postulated. A detailed analysis of the cleavages also allowed the identification of certain

amino acid characteristics in positions flanking the cleavage site that guide the selection

of the P1 residues by the 3 different active β-subunits. Since yeast and mammalian

proteasomes are highly homologous, similar cleavage motifs might be employed by

mammalian proteasomes. Therefore, our data provide a first basis for predicting

proteasomal degradation products from which peptides are sampled by MHC class I

molecules for presentation to cytotoxic T cells.

2.2.2 Introduction

The eukaryotic 20S proteasome represents the catalytic core particle of the 26S

proteasome which is an essential component of the ubiquitin-dependent protein

degradation pathway. The 20S particle is composed of 14 different but related subunits.

Two outer disks, containing 7 α-subunits each, guard the two inner heptameric β-subunit

rings, which contain three proteolytically active sites each (Groll et al., 1997). How

substrate molecules gain access to the active sites at the inner surface of the β-rings is

not known. It has been hypothesized that upon association of the 20S particle with

regulatory complexes, like the 19S cap structure or PA28, an opening in the middle of the

α-subunit rings is induced allowing unfolded proteins to be fed into the 20S particle.

Probably as a consequence of this closed structure, very few proteins have been found to

be degraded by 20S proteasomes in vitro and only very few individual fragments and

cleavage sites generated during the degradation of proteins by eukaryotic 20S

proteasomes have been analyzed until now. This kind of analysis is of interest for several



67

reasons.

 First, it still has to be confirmed that the specificities of the proteasomal β-subunits

observed in experiments using peptide substrates (Orlowski and Michaud, 1989; Cardozo

et al., 1992; Heinemeyer et al., 1997; Niedermann et al., 1996; Niedermann et al., 1997;

Dick et al., 1996), summarized as trypsin (T)-like, chymotrypsin (ChT)-like and

peptidylglutamyl-peptide hydrolyzing (PGPH)-activity, correspond to cleavages performed

in intact proteins, a situation physiologically more relevant.

Second, the mechanism of protein degradation by the proteasome is not known. For the

archebacterial proteasome, which is a less complex structure consisting of 14 identical α-

and β-subunits (Löwe et al., 1995), a processive model has been proposed (Kisselev et

al., 1998; Akopian et al., 1997). Because of the high structural homology with the

archebacterial particle a similar mechanism can be expected for eukaryotic proteasomes.

Furthermore, it has been postulated that the 20S proteasome is equipped with a

molecular ruler that determines the length of fragments generated (Wenzel et al., 1994).

In the archebacterial proteasomes, the ruler was postulated to reflect the distance

between each of the seven active β-subunits (Dick et al., 1994). Therefore, a reduction of

active sites is predicted to change the average length of fragments generated. In yeast

proteasomes carrying only three active sites, another kind of ruler was proposed to reflect

the distance of the 3 active β-subunits to putative proteolytically active sites at the

carboxy-terminal ends of α-helices at the β-annulus (Groll et al., 1997). Two studies

recently performed using yeast 20S mutant proteasomes with inactivated β-subunits,

however, excluded the latter model and revealed instead that no proteolytically active

sites exist within the proteasome besides the β-subunits containing the active site Thr

(Dick et al., 1998; Ditzel et al., 1998). The factor determining the length of the degradation

products is therefore imposed either by the distance between the three active sites,

analogous to the prediction for the Thermoplasma model, or by so far unknown

mechanisms.

The third reason for an in-depth analysis of fragments resulting from proteasomal protein

digests is the lack of knowledge about the selection of cleavage sites during the

degradation of substrates. Why the proteasome selects certain cleavage sites and ignores

others with identical P1/P1' composition is not known at all. A compilation of cleavage

sites from a large panel of fragments should be very helpful in identifying amino acid

motifs that explain the selection and allow the prediction of cleavage sites. Because the

subunit topology and structure of mammalian proteasomes is analogous to that of yeast
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(Kopp et al., 1997), the results will provide crucial information for the general

understanding of the proteasomal activity.

We therefore examined in detail peptide fragments generated in digestions of yeast

enolase-1 protein by wt and mutant yeast 20S proteasomes containing inactivated β-

subunits (Heinemeyer et al., 1997). Degradation products of the individual digests were

analyzed for processive substrate degradation, fragment length and the presence of

cleavage motifs recognized by the three proteasomal subunits β2/Pup1, β1/Pre3 and

β5/Pre2. The data obtained allow us to present proteasomal cleavage maps of a large,

unmodified protein for the first time. We find strong evidence for a processive degradation

of the protein substrate and demonstrate that the number of active sites does not affect

the average fragment length. From this we can exclude that the rules governing the

fragment length in yeast 20S proteasomes are the result of the distance between active

sites. The detailed analysis of cleavage sites in digests using wt and mutant yeast

proteasomes also allows us for the first time to propose distinct cleavage motifs for the

three active sites of eukaryotic 20S proteasomes that go far beyond the specificities
described using peptide substrates.

2.2.3 Materials & Methods

2.2.3.1 Generation of mutant proteasomes and purification of yeast 20S proteasomes

Generation of yeast proteasome mutants and the purification of yeast 20S proteasomes

has recently been described elsewhere (Groll et al., 1997; Heinemeyer et al., 1997).

2.2.3.2 HPLC-Separation of enolase digests

For the separation of degradation products unfractionated enolase digests were subjected

to µRP SC 2.1/10-columns (Pharmacia) on a Microbore HPLC-system (SMART-system,

Pharmacia). Buffer A: 0,1% TFA; buffer B: 0,081% TFA, 80% acetonitril. Gradients were

10% B for 5 min, in 35 min to 40% B, in 8 min to 75% B and up to 85% in another 7 min at

a flow rate of 150 µl/min.

2.2.3.3 Fragmentation of degradation products

Ms/ms experiments were performed on a hybrid quadrupole orthogonal acceleration

tandem mass spectrometer (Q-TOF, Micromass). Fragmentation of the parent ions was

achieved by collision with argon atoms. Q1 was set to the mass of interest +/- 0.5 Da and

the collision energy optimized for each fragment. Integration time for the TOF analyzer
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was 1s with an inter scan delay of 0.1s.

2.2.3.4 Digestions

Digests were incubated at 37ºC and stopped by freezing at -20ºC. Conditions in all digests

were:  0,01% SDS, 10mM EDTA at molar ratios of enolase (10-20 µM) to 20S proteasome

(40-60 nM) of 200-400:1. Buffer: 20mM Hepes-KOH, pH 7.6, 2mM MgAc2, 1mM DTT.

2.2.3.5 MALDI MS analysis

1 µl of DHAP-matrix (20mg 2,5-dihydroxy-acetophenon, 5mg ammoniumcitrate in 1ml

80% isopropanol) was mixed with 1 µl of each HPLC peak fraction on a gold target.

Measurements were executed using a LD-TOF (laser desorption- time of flight)-system

(Hewlett-Packard G2025A) at a vacuum of 10-6 Torr. For signal generation 50 to 150 laser

shots were added up in the single shot mode.

2.2.3.6 N-terminal sequencing (Edman degradation)

Routinely, 15 µl of each HPLC peak fraction from digest fractionations were applied to the

pulsed-liquid sequencer Procise 494 (Applied Biosystems).

2.2.3.7 Statistical analysis

2.2.3.7.1 Frequencies of amino acids.

The probability q(k) for finding a given amino acid exactly k times in a given position by

random selection of cleavage sites (considering that each single peptide bond can be

randomly selected only once for each enolase molecule) can be calculated according to

the hypergeometric distribution.

q(k) values were used to calculate 2-sided tail probabilities p to indicate deviation of

observed frequencies from a random selection of certain amino acids at a given position.

Because we considered positions P6 to P6' surrounding a cleavage site the total number

of potential cleavage sites (N) in enolase-1 was reduced from 435 to 425.

2.2.3.7.2 Comparison of amino acid characteristics.

To compare the characteristics of amino acids the 2-sided Student's t-test for two

independent data sets was performed. Hydropathicity parameters were taken from Kyte

and Doolittle (Kyte and Doolittle, 1982), bulkiness parameters from Zimmerman et al.

(Zimmerman et al., 1968), and normalized frequency parameters for beta-turn from Levitt

(Levitt, 1978). Results are shown as p-values and mean value differences including the
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95% confidence limit.

2.2.4 Results

2.2.4.1 Degradation of enolase-1

Denaturation of proteins is a prerequisite for their digestion by 20S proteasomes. In order

to perform digestions of proteins without prior covalent modifications we used protein

substrates known for their thermolability, like yeast enolase-1. Enolase-1 was incubated

with yeast 20S proteasomes at a molar ratio of about 300:1. Aliquots were taken at

different time points and separated by reversed phase HPLC. Peaks containing

degradation products increase over time, while the signal for undigested enolase

disappears (Figure 2.2-1).

Figure 2.2-1: Enolase-1 degradation by yeast wt 20S proteasomes

Percent values represent the degree of enolase degradation as determined by linear regression.

(Bottom) Dotted line in lower panel: Incubation of enolase without proteasome.

Substrate degradation was linear with a degradation velocity of 6 min (data not shown).
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The observed stability of the peak pattern over time and the lack of larger enolase-1

fragments, especially at early time points (Figure 2.2-1) argue for a processive substrate

degradation mechanism as proposed for the Thermoplasma proteasome (Akopian et al.,

1997). The peaks A-E observed at different digestion times indeed contained identical

fragments as determined by MALDI-MS analysis and Edman degradation (data not

shown). The fragments in the range of 12 minutes coelute with digestion buffer

components and the peak height therefore does not reflect the amount of peptides.

2.2.4.2 Digestion map of enolase-1 by wt yeast 20S proteasomes

All peak fractions obtained during reversed-phase HPLC separation of digests were

analyzed by MALDI-MS, Edman sequencing and Q-ToF-MS/MS analysis and compiled

into a digestion map (Figure 2.2-2). The digests were reproduced two times, yielding

comparable HPLC profiles.

Figure 2.2-2: Digestion map generated from degradation of enolase-1 by yeast wt 20S
proteasomes

Vertical lines: Cleavage sites determined by Edman degradation and mass spectrometry. Closed

bars ( ): Degradation products identified by Edman degradation and mass spectrometry.

Open bars ( ): Degradation products identified by Edman degradation; C-terminus not yet

confirmed by mass spectrometry.

As summarized earlier (Coux et al., 1996), proteasomes are able to perform cleavages
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after almost every amino acid, whereby some residues are disfavored (such as Pro,

Gln, Asn, Gly, Thr, Ser and Lys) and others favored (Ile, Leu, Trp, Tyr, Asp and Arg) (see

Table 2.2-1 for details). The selection of amino acids at positions flanking the cleavage
sites will be discussed later.

Three conclusions can be drawn from the observed cleavages: (i) the yeast 20S wt

proteasome clearly prefers certain peptide bonds over others as cleavage sites; (ii) not all

possible cleavage sites are used in one individual substrate molecule, resulting in the

production of overlapping peptides; (iii) some regions of the enolase sequence are

characterized by a high number, others by a low number of cleavage sites. This clustering

cannot be correlated to charge clusters and repetitive elements which were not detected

in the enolase-1 sequence using the SAPS program (Brendel et al., 1992). The fragments

identified (n=66) in a single digest of enolase by wt 20S proteasomes cover a range of 3-

23 amino acids (Figure 2.2-4). Fragments with a size of 3-9 amino acids clearly dominate

with a mean fragment length of 7.5 amino acids (SD = 3.5). The digestion of enolase-1

using human 20S proteasomes resulted in a similar set of fragments, indicating a highly
conserved selection of cleavage sites (Nussbaum et al., in preparation; see 2.2.9).

2.2.4.3 Digestion of enolase-1 by mutant yeast 20S proteasomes

To analyze the contribution of the three active β-subunits to the observed cleavages we

digested enolase-1 with the following mutant yeast 20S proteasomes carrying inactivated

β-subunits, which were purified from the following mutant strains: pre2-K33A, pup1-T1A,

pup1-T1A pre3-T1A and pre3-T1A (Heinemeyer et al., 1997). Cleavage activity was

analyzed as described for wt proteasomes. The β2/Pup1- proteasome did not cleave

peptide bonds after basic amino acids (Figure 2.2-3A, Table 2.2-1), the β1/Pre3- particle

performed only one of the 17 cleavages found in wt proteasomes after acidic residues

(Figure 2.2-3B, Table 2.2-1) and the β2/Pup1-β1/Pre3- proteasome completely lacked

proteolytic activity after basic and acidic residues (Figure 2.2-3C, Table 2.2-1). The

β5/Pre2- proteasome, completely lacking ChT-like activity as tested with fluorogenic

substrates (Heinemeyer et al., 1997; Dick et al., 1998), surprisingly performed a high

number of cleavages after hydrophobic amino acids (Figure 2.2-3D, Table 2.2-1).

Because yeast 20S proteasomes contain no proteolytically active sites besides the three

active β-subunits, the β1/Pre3 and β2/Pup1 subunits, previously thought to cleave only

after charged residues, also harbor ChT-like activity. These features were already

observed during the analysis of synthetic peptide substrates digested with the same
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mutant proteasomes (Dick et al., 1998) and during experiments using inhibitors of the

T-like and ChT-like activities (Savory et al., 1993; Reidlinger et al., 1997).

Figure 2.2-3: Digestion maps generated from degradation of enolase-1 by yeast mutant 20S
proteasomes

The maps include all the degradation products of enolase-1 identified after digestion by (A) β5/Pre2-,

(B) β2/Pup1-, (C) β2/Pup1-β1/Pre3-, (D) β1/Pre3- 20S proteasomes. Degradation products were

identified by Edman degradation and mass spectrometry. Symbols as in Figure 2.2-2.

In addition, the number of cleavages after basic and acidic residues performed by the

β5/Pre2- particle was increased compared to wt proteasomes, most likely due to lack of

competing cuts normally performed by the β5/Pre2 subunit. Even more surprising, all

mutant proteasomes generated fragments of an average length of 7-9 amino acids (7.9,

SD=3.5 for β5/Pre2-; 7.9, SD=3.3 for β2/Pup1-; 8.8, SD=4.3 for β2/Pup1-β1/Pre3-; 7.8,

SD=3.5 for β1/Pre3-), which is in the range of fragments generated by wild-type

proteasomes (Figure 2.2-4). Therefore, the size of fragments generated by yeast

proteasomes is not related to the distance between the active β-subunits, as postulated



74

previously for the Thermoplasma proteasome (Wenzel et al., 1994).

Figure 2.2-4: Distribution of fragment lengths generated by wt and mutant proteasomes from
enolase-1

For each proteasome only internal fragments with known C-terminus and identified from one single

digestion experiment were included. M: mean fragment length. SD: standard deviation. n: number of

interanl fragments identified. Numbers to the right: Number of active β-subunits present in the

different proteasome species.

2.2.4.4 P1 amino acids and statistical analysis of flanking residues

The observed frequencies of amino acids in the P1 position of fragments generated by

wildtype and mutant proteasomes indicate dominant cleavages after Leu or Arg, which are
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used approximately every second time these residues appear in enolase-1. On the

other hand, only 2 of 37 Gly residues are used for cleavage (Table 2.2-1). Despite

exerting a significant influence, the P1 amino acid is obviously not the only factor

determining the location of a cleavage site. By considering only the P1 position for

example, it remains unclear why cleavages were detected after certain Leu residues, but

not after other Leu residues.

Table 2.2-1: Frequencies of amino acids in the P1 position

No. of observed cleavages

P1
residue

Total no.
in enolase

wt
(n=105)

ββββ2/Pup1-
(n=80)

ββββ1/Pre3-
(n=88)

ββββ2/Pup1-
ββββ1/Pre3-
(n=73)

ββββ5/Pre2-
(n=96)

Ala 55 11 10 13 10 10
Arg 14 8 0 5 0 9
Asn 19 3 1 3 1 3
Asp 31 12 9 1 0 14
Cys 1 1 0 0 0 0
Gln 9 0 1 2 1 1
Glu 25 6 8 1 0 9
Gly 37 2 0 2 1 2
His 11 2 0 1 1 2
Ile 22 7 7 6 8 3

Leu 40 19 16 18 20 10
Lys 37 4 0 3 0 4
Met 5 1 0 1 1 1
Phe 16 5 8 9 8 2
Pro 15 0 0 0 0 0
Ser 31 5 2 3 4 8
Thr 20 2 1 2 1 0
Trp 5 4 4 4 4 2
Tyr 9 3 7 4 7 5
Val 34 10 6 10 6 11

This table only comprises cleavage sites that are not within the 6 N- or C-terminal aa; i.e. it only

contains cleavage sites that were also included in the statistical analysis. Therefore, wt and β2/Pre2-

have each 1 cleavage site fewer than in the cleavage maps (Figure 2.2-2 and Figure 2.2-3).

In order to statistically evaluate the frequency of all amino acids in positions ± 6

surrounding cleavable peptide bonds, we compared the observed frequencies with those

frequencies expected from a random cleavage distribution. Using the hypergeometric

distribution, a value is assigned to each amino acid in every position, representing the

probability (p) for the observed frequency to be the result of randomly distributed
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cleavages. A statistically significant accumulation or scarcity of particular amino acids in

certain positions is taken as an indication for a positive or negative influence on the

selection of peptide bonds hydrolyzed by the proteasomal subunits. To justify this

approach, a set of cleavages of the same size as the data set was generated by a random

number generator and statistically evaluated as a control, resulting in no significant

accumulation of amino acids (data not shown).

2.2.4.5 Specificity of the wildtype proteasome

Examination of cleavages performed by the wildtype proteasome (n=105) revealed the

following deviations from randomness in the cleavage pattern (p values are two-sided tail

probabilities). Leu as a P1 residue has the highest significance (p<0.00082) and reflects

pronounced ChT-like activity within wt proteasomes. Weaker preferences for Arg in P1

(p<0.0084), Pro in P4 (p<0.0033) and Gln in P5 (p<0.0011) are also evident. On the other

hand, certain residues appear to exert negative influence in certain positions. In the P1

position, Gly is less abundant than expected (p<0.0011). When observed cleavage sites

(n=105) are compared to the remaining sites (not observed as cleavage sites, n=320)

using the two-sided Student's t-test, a preference for small residues becomes apparent in

P1' (p<0.0072; 1.57 ± 1.15).

2.2.4.6 Specificity of the β5/Pre2 active site

To evaluate a 'cleavage motif' for a single active β-subunit, in this case β5/Pre2,

cleavages performed by the β2/Pup1-β1/Pre3- 20S particle were analyzed (n=73). The

statistical analysis clarifies the order of preference for the different hydrophobic P1

residues relative to their abundance in the substrate: Leu (p<0.0000003) > Tyr (p<0.0001)

> Phe (p<0.002) > Trp (p<0.0035) > Ile (p<0.02), but no accumulation is apparent for Val.

This is, however, in agreement with recent studies on the cleavage of peptide substrates,

indicating that cleavage after Val can be efficiently catalyzed by β2/Pup1 (Dick et al.,

1998). Similar to the wt proteasome, Gly is disfavored in the P1 position. When amino

acids are grouped (hydrophobic, basic, acidic and others) the preference for hydrophobic

residues in P1 is even more impressive (p<3*10-17) together with a weak preference for

basic residues at P1' (p<0.0012). When comparing the observed cleavages (n=73) to the

remaining sites (n=352), the following preferences are observed: In positions P3 and P5'

polar residues are clearly favored over non-polar ones (p<0.000072; 1.54 ± 0.75 and

p<0.0032; 1.15 ± 0.76, respectively) and a preference for β-turn-promoting residues is

seen in position P3 (p<0.0093; 0.13 ± 0.10). To determine more precisely why β5/Pre2
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selects certain Leu as P1 residues, but not others, observed cleavage sites with Leu in

P1 (n=20) were compared to the corresponding unobserved sites with Leu in P1 (n=19):

Again there is a positive correlation between cleavage and the presence of polar

(p<0.00076; 3.2 ± 1.8) and turn-promoting residues (p<0.0022; 0.38 ± 0.24) in the P3

position.

2.2.4.7 Certain cleavages are not restricted to a single active site

β5/Pre2-catalyzed cleavages as defined by the β2/Pup1-β1/Pre3- double mutant (n=73)

should belong to a set complementary to that provided by the β5/Pre2- mutant (n=96).

However, there is considerable overlap between these two sets of cleavages. Cleavages

common to both β5/Pre2- and β2/Pup1-β1/Pre3- proteasome digests (n=31) therefore

represent features not dependent on a single subunit. We find Tyr preferred at the P1

position (p<0.0002) and Pro at P4 (p<0.0003). When comparing cleavage sites of this

intersecting subset (n=31) against the remaining sites (n=394), P1 residues tend to be

more hydrophobic (p<0.0013; 1.8 ± 1.1) and P3 residues more hydrophilic (p<0.00023;

2.1 ± 1.1).

2.2.4.8 Specificity of the β2/Pup1 active site

Because the respective double mutant proteasomes were not available, the motifs for

β2/Pup1 and β1/Pre3 subunits must be approximated. One possibility for approximating

β2/Pup1-specificity is to consider those cleavages catalyzed exclusively by β1/Pre3-

 proteasomes (n=88), but not by β1/Pre3- β2/Pup1- proteasomes (n=73). For these

cleavages (n=41) analysis points out weak preferences for Gly in position P1' (p<0.001)

and Pro in position P3' (p<0.001). Another possibility of approaching the β2/Pup1 motif is

to look at those cleavages common to both β1/Pre3- (n=88) and β5/Pre2- (n=96)

proteasomes, which should mostly originate from the β2/Pup1 subunit (n=46). Analysis of

amino acid frequency reveals a strong preference for Pro in P4 (p<0.00004) and P3' and

Lys in P3 (p<0.0031). However, this set of 46 cleavages includes 31 cleavages that can

be found in either β1/Pre3-β2/Pup1- or β2/Pup1- proteasomes and therefore belong to the

category of cleavages that are not subunit-specific. Analysis of the remaining 15, strictly

β2/Pup1-specific cleavages reveals Arg in P1 (p<0.000044), Pro in P3', Gly in P1', but not

Pro in P4, again showing that the preference for Pro in P4 is strongly associated with

those cleavages that can be catalyzed by more than a single subunit.
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2.2.4.9 Specificity of the β1/Pre3 active site

Again, there are several possibilities of approximating a β1/Pre3 cleavage motif. Looking

at those cleavages common to both digests with proteasomes lacking active β5/Pre2

(n=96) and active β2/Pup1 subunits (n=80), the intersecting set includes 44 cleavages:

Pro in P4 is the most prominent feature (p<0.000002), followed by Tyr in P1 (p<0.0009). If

those cleavages not specific to a single subunit are eliminated, only 14 cleavages remain

as truly β1/Pre3-specific. Asp now is significant in P1 (p<0.0000007) and Glu in P1 also

becomes evident (p<0.0063). Comparing the cleavages common to proteasomes with

active β1/Pre3 subunits (n=44) against the remaining sites of enolase (n=381), the P5

position turns out to prefer hydrophilic residues (p<0.0001; 3.2 ± 1.6). The P3 position

favors hydrophobic residues (p<0.00061; 2.82 ± 1.6) and disfavors turn-promoting

residues (p<0.0076; 0.29 ± 0.21). If cleavages with Asp or Glu in P1 (n=31) are compared

against the remaining Asp and Glu sites (n=24), amino acids at the P4' position tend to be

more hydrophobic (p<0.0056; 2.07 ± 1.43). The proposed cleavage motifs are

summarized in Table 2.2-2.

2.2.5 Discussion

The specificity of 20S proteasomes has been investigated so far either by the use of

peptide substrates and inhibitors of the proteasomal activities. To analyze the

proteasomal specificity under more physiological conditions we established a protocol that

allowed the digestion of an entire protein, yeast enolase-1, without denaturation by

covalent modification of amino acids. The identification of more than 400 enolase-1

fragments generated in digests using wild-type and mutated yeast 20S proteasomes

carrying different combinations of inactivated β-subunits allowed a detailed analysis of the

length of fragments generated, proteolytic specificity, β-subunit contribution to the

observed cleavages and a description of motifs that explain the selection of cleavage

sites.
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Table 2.2-2: Cleavage motifs of yeast 20S active subunits

Position

P5 P4 P3 P2 P1 P1' P2' P3' P4' P5'

wt (Pro)* Leu

(Arg)

-Gly

β-turn

small

ββββ5/Pre2 polar

β-turn

Leu

Tyr

Phe

Trp

-Gly

basic β-turn

polar

ββββ2/Pup1 (Lys) Arg

(Lys)

(Gly) (Pro)

ββββ1/Pre3 polar hydro-

phobic

Asp

(Glu)

hydro-

phobic

Subunit
indepen-
dent

Pro hydro-

phobic

Tyr

hydro-

phobic

*Amino acids in parentheses indicate P values below the significance level after the adjustment for

multiple testing according to the Bonferroni method (Bland and Altman, 1995). Significances are,

however, supported by amino acid characteristic analysis or crystal structure data. A minus indicates

a disfavored amino acid.

2.2.5.1 Protein degradation and fragment length

We determined a duration of 6 min for the degradation of one molecule of enolase by one

yeast wt 20S proteasome. This value is in the range of activities found so far for

degradation of whole proteins by eukaryotic and archaeal 20S proteasomes (Kisselev et

al., 1998; Dick et al., 1994; McGuire et al., 1989; Dick et al., 1991), but is likely to be far

from physiological levels. In vivo it takes less than 60 min from viral infection to MHC class

I restricted presentation of viral peptides to cytotoxic T cells (Hosken et al., 1989).

Numerous possibilities can explain this discrepancy, ranging from the lack of crucial

components in the digestion buffer to missing in vivo 'helpers of proteasomal proteolysis'

such as the 19S cap complex, hsc70 (Bercovich et al., 1997) or activators such as PA28

in mammalian cells (Dick et al., 1996; Dubiel et al., 1992; Ma et al., 1992; Groettrup et al.,
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1996).

Our experiments using yeast 20S proteasomes and enolase-1 as a substrate show a very

stable pattern of degradation products in HPLC-separated digests over time (Figure 2.2-1)

as reported for the Thermoplasma 20S proteasome (Kisselev et al., 1998; Akopian et al.,

1997). In addition, the same degradation products could be identified at early time points

when only 5% of the substrate is degraded and also at late time points when 95% of the

substrate molecules are digested (data not shown). This demonstrates that final

degradation products are generated without the presence of large degradation

intermediates.

The finding that all proteasomes analyzed so far generate peptides with an average length

of 7-9 amino acids led to the proposal of an intrinsic molecular ruler determining the

fragment size (Groll et al., 1997; Löwe et al., 1995; Wenzel et al., 1994). Our finding that

proteasomes carrying 6, 4 or 2 active β-subunits generate fragments of similar length

strongly argues against the distance between the active sites influencing the length of

proteasomal digestion products (Figure 2.2-4). The small fragment length increase from

the wild-type proteasomes to the β1/Pre3-β2/Pup1- proteasomes is most likely due to lack

of cleavage activity after charged amino acids which represent 25% of the amino acids in

enolase-1. Our observed fragment length distribution is also in agreement with recent

results using partially modified protein substrates and archaeal proteasomes (Kisselev et

al., 1998). An explanation might be that proteasomes either have an exit size filter

preventing the dissociation of products above a certain size or that active β-subunits

preferentially bind polypeptide stretches of 7-8 amino acids. The nonsymmetrical shape of

the fragment length distributions (Figure 2.2-4) might indicate a log-normal distribution of

the fragment size, as postulated (Kisselev et al., 1998; Akopian et al., 1997). The fact that

the main part of cleavage products does not fall into the range of MHC-ligands (8-10aa)

probably mirrors the predominant contribution of the proteasome to general intracellular
proteolysis, which preceded its participation in antigen processing in evolution.

2.2.5.2 Specificity and selectivity of the active β-subunits

Analysis of the specificity of the different β-subunits revealed that the β5/Pre2 subunit is

responsible for the ChT-like activity, as expected. Proteasomes containing inactivated

β2/Pup1 or β1/Pre3 subunits lacked only cleavage activity after basic or acidic residues,

respectively. By analyzing the cleavage sites performed by the double mutant containing

β5/Pre2 as the only active subunit we found the strongest selection for Leu in P1 followed
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by Tyr, Phe and Trp. By comparing the flanking residues around the β5/Pre2 cleavage

sites with the rest of the observed cleavages we found a strong preference for polar and

β-turn promoting amino acids at P3. This observation correlates to characteristics of

amino acids at the inner surface of the proteasome surrounding the active site Thr1 of

β5/Pre2. A polar pocket formed by His98, Asp114, Glu120 and Arg125 of the β6/C5

subunit might accommodate P3 residues of substrates. A similar situation might exist at

the P1' position, where basic residues are enriched and might interact with the negatively

charged side-chains of Asp114 and Asp116 of  β5/Pre2.

The analysis of cleavages performed by β2/Pup1 revealed a preference for Arg over Lys

in P1. The reasons for this selectivity are not known but have already been observed

(Ossendorp et al., 1996). Flanking residue analysis revealed also an enrichment of Lys at

P3 of the fragments generated by β2/Pup1. The basic side-chain might interact with an

acidic pocket formed by Asp28 (β2/Pup1) and Asp114, Glu120 and Glu121 of β3/Pup3.

On the P' side, flexible and β-turn promoting amino acids like Gly at P1' and Pro at P3' are

enriched. This feature of β2/Pup1 substrates might be imposed by amino acids, including

His35 of β2/Pup1, which block the end of a putative substrate binding cleft and thus

require substrate bending.

The β1/Pre3 subunit favors aspartate over glutamate in P1 and at position P5 polar amino

acids, and at position P3 hydrophobic residues are enriched. Whether these features are

reflected by the amino acids surrounding the active site Thr1 remains to be determined.

Surprisingly, the β2/Pup1 and β1/Pre3 subunits also contribute substantially to the ChT-

like activity as evident from the analysis of the β5/Pre2- proteasome, where only a slight

reduction in the number of cleavages after hydrophobic amino acids was found. After

analyzing the cleavages performed by the β5/Pre2- and the β2/Pup1-β1/Pre3-

proteasomes, expected to contain complementary sets of cleavage sites, 31 identical

cleavages were found in both groups. By examining the residues flanking these cleavage

sites, we found Pro at P4 significantly enriched possibly favoring a turn at this position.

When we extended the analysis of amino acid frequencies and characteristics to 10 amino

acids flanking observed cleavage sites in both directions, we did not observe any

additional significant amino acid preferences. This finding might indicate that a stretch of

about 10 amino acids (P5 to P5') is critical for the selection of a cleavage site by the β-

subunits.

The cleavage motifs for proteasomal cleavages described here represent the first tools for
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developing an algorithm for the prediction of proteasomal cleavage sites. These motifs

will be relevant for  the prediction of peptides generated by mammalian proteasomes

since the cleavages in enolase-1 generated by yeast or human 20S proteasomes overlap

to a large extent (Nussbaum et al., unpublished observations; see 2.2.9). Nevertheless,

detailed studies using human 20S proteasomes, lacking or containing interferon-inducible

β-subunits, will be performed to assess their contribution to the generation of epitopes for

cytotoxic T cells and to refine the cleavage motifs.
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T trypsin

ChT chymotrypsin

PGPH peptidylglutamyl-peptide hydrolyzing

MHC major histocompatibility complex

wt wild type

MS mass spectrometry

MALDI matrix associated laser desorption ionisation

Q-Tof Quadrupole Time of Flight
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2.2.9 Additional data: Cleavage motif of human erythrocyte 20S

proteasomes

Soon after analysing the yeast 20S cleavage motifs, I finished the analysis of the digest of

enolase by human erythrocyte 20S proteasomes, with the help of members of the

analytics group in the lab (Dr. Stevanović and M. Schirle).

The results have only been published in detail as poster contributions at several

conferences (e.g. DGfI Jahrestagung 1999, Hannover) and are summarized below:

2.2.9.1 Fractionation of the degradation products by HPLC

Figure 2.2-5: HPLC-chromatogram of digest of enolase-1 by human erythrocyte 20S
proteasomes

The digest was stopped by freezing at -20°C after 5 days of incubation at 37°C. At this time, enolase

was degraded to about 80%. No enolase disintegration was observed in a control without

proteasomes. For buffer conditions, check 2.2.3.2.
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2.2.9.2 Cleavage map

Figure 2.2-6: Cleavage map of the degradation of enolase-1 by human erythrocyte 20S
proteasomes

The map comprises the 107 full fragments (horizontal bars) and the 118 cleavage sites (vertical

lines) identified in digests of enolase by human erythrocyte 20S proteasomes. (Solid bars) full

fragments of which both N- and C-termini are known. (Open bars) fragments for which only the N-

termini were identified.
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2.2.9.3 Fragment length distribution

Figure 2.2-7: Human and yeast proteasomes generate fragments of similar length in digests of
enolase

The general fragment length distribution is similar for yeast and human 20S proteasomes, with a

range from 3-23 aa. The slightly longer average length for human 20S proteasomes can be

explained by improved analytical methods which made it possible to identify more (especially longer)

fragments. Only internal fragments with known C-terminus and identified from one single digestion

experiment were included. M: mean fragment length. SD: standard deviation. n: number of interanl

fragments identified.
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Cleavage motif

Table 2.2-3: The cleavage motifs of yeast (wt) and human erythrocyte 20S proteasomes
overlap largely

Both proteasome species prefer large, hydrophobic and aa in P1, whereas they dislike the small aa

Gly at this position. They both like small aa in P1' and Pro in P4. For the human 20S proteasome, the

statistical analysis yielded p-values of barely significant numbers.

In summary, the cleavage preferences of yeast and human 20S proteasomes are similar.

We used the yeast and human 20S proteasome cleavage data to generate algorithms for

the prediction of proteasomal cleavages. This is shown in the next section (2.3) of the
Results part.
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2.3 An algorithm for the prediction of proteasomal
cleavages

2.3.1 Summary

Proteasomes, major proteolytic sites in eukaryotic cells, play an important part in major

histocompatibility class I (MHC I) ligand generation and thus, for the regulation of specific

immune responses. Their cleavage specificity is of outstanding interest for this process.

In order to generalize previously determined cleavage motifs of 20S proteasomes, we

developed network-based model proteasomes trained by an evolutionary algorithm with

experimental cleavage data of yeast and human 20S proteasomes. A window of 10

flanking amino acids (AAs) proved sufficient for the model proteasomes to reproduce the

experimental results with 98-100% accuracy. Actual experimental data were reproduced

significantly better than randomly selected cleavage sites, suggesting that our model

proteasomes were able to extract rules inherent to proteasomal cleavage data. The

affinity parameters of the model, which decide for or against cleavage, correspond with

the cleavage motifs determined experimentally. The predictive power of the model was

verified for unknown (to the program) test conditions: the prediction of cleavage numbers
in proteins and the generation of MHC I ligands from short peptides.

In summary, our model proteasomes reproduce and predict proteasomal cleavages with

high accuracy. They present a promising approach for predicting proteasomal cleavage

products in future attempts and, in combination with existing algorithms for MHC I ligand

prediction, will be tested to improve cytotoxic T lymphocyte (CTL) epitope prediction.

2.3.2 Introduction

Proteasomes are cytosolic multisubunit proteases which are involved in cell cycle control,

transcription factor activation and the generation of peptide ligands for MHC I molecules

(for reviews, see Baumeister et al. (1998), Rock and Goldberg (1999), Uebel and Tampe

(1999)). They exist in several forms: The proteolytically active core complexes, or 20S

proteasomes, and, when associated with the ATP-dependent 19S cap complexes, the

larger 26S proteasomes that are able to recognize proteins marked by ubiquitin for

proteasomal degradation (Jentsch and Schlenker, 1995; Hershko and Ciechanover,

1998). Another protein complex known to associate with the 20S core particle is PA28, the

11S regulator (Ahn et al., 1995), which was shown to improve the yield of antigenic
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peptides (Groettrup et al., 1996; Dick et al., 1996).

Eukaryotic 20S proteasomes consist of four stacked rings (overall stoichiometry α7β7β7α7),

each consisting of 7 different subunits (Groll et al., 1997). Each of the two inner β-rings

carries three catalytically active sites on its inner surface. Their proteolytic specificities

have been described as chymotrypsin-like (cleaving after large, hydrophobic AAs),

trypsin-like (cleaving after basic AAs) and peptidyl-glutamyl-peptide-hydrolyzing (cleaving

after acidic AAs) (for review, see Uebel and Tampe (1999)). Strings of unfolded proteins

are thought to be inserted into the cylinder and to be cut into pieces by the active sites;

the resulting peptide fragments are then released into the cytosol. Functionally,

proteasomal protein degradation is believed to proceed from one substrate end to the

other (“processively”), without the release of large degradation intermediates (Akopian et

al., 1997; Nussbaum et al., 1998; Kisselev et al., 1999a).

In vertebrate cells, some of the proteolytic fragments produced by the proteasome are fed

into the antigen processing machinery. Since peptide presentation by MHC I molecules at

the cell surface is an intrinsic requirement for the ability of the immune system to eradicate

virus-infected or transformed cells (Rammensee et al., 1993; Pamer and Cresswell,

1998), it is of general interest to know exactly how the proteasome is involved in this

process. Proteasomal cleavage specificity has been assessed by in vitro digestion

experiments using either tri- or tetrapeptides with fluorogenic leaving groups (Kuckelkorn

et al., 1995; Heinemeyer et al., 1997; Arendt and Hochstrasser, 1997), peptides of 15-40

AAs (Boes et al., 1994; Niedermann et al., 1995; Niedermann et al., 1996; Dick et al.,

1998), or denatured proteins (Dick et al., 1991; Dick et al., 1994; Kisselev et al., 1998,

Kisselev et al., 1999a) as substrates. We analyzed the cleavage preferences of yeast

wild-type and mutant proteasomes in a non-modified protein (Nussbaum et al., 1998)3.

Using statistical analysis of cut sites, it was possible for the first time to determine so-

called cleavage motifs, i.e. the preferred sequences around cleavage sites, for the three

active β-subunits of yeast proteasomes.

In order to apply this cleavage site information to any possible proteasome substrate, one

needs an automated prediction device. Such devices already exist for the binding of

                                               

3 Mutant yeast proteasomes: β5/Pre2-, β2/Pup1-, β1/Pre3- carrying one inactivated β-subunit are

denoted here as “single mutants”; β2/Pup1- β1/Pre3- carrying two inactivated β-subunits is denoted

here as “double mutant”.
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peptides to MHC I molecules (Rammensee et al., 1997) and have been described for

peptide transport by the transporter associated with antigen processing (TAP) (Daniel et

al., 1998). However, devices for the prediction of proteasomal cleavages are only at the

beginning of their development. Recently, published peptide cleavage data were used to

develop a prediction algorithm (Holzhütter et al., 1999), which reproduced its training data

with 93% and predicted non-training cleavages in one peptide substrate with 80%

accuracy. For different AAs in the P1 position4, cleavage motifs spanning up to 13 AAs

were calculated by the algorithm. However, it has recently been shown that the three

different proteolytic activities of eukaryotic proteasomes exhibit overlapping specificities

(Dick et al., 1998; Nussbaum et al., 1998). We therefore planned to generate a prediction

device that does not rely on various motifs for different P1-AAs, but reflects a combination

of the cutting of three active sites. This should mirror the experimental situation more

efficiently where observed cleavages arise from a mixture of three different, partly

overlapping proteasomal cleavage specificities. More importantly, we wanted our

approach to be based on a more homogeneous set of training data, possibly generated

under identical conditions. A device for proteasomal cleavage prediction would take us

one step further in predicting the selection of CTL epitopes presented on MHC I by the

three well-described “funnels of specificity”: proteasome cleavages, TAP transport, MHC I

binding.

To this end, we developed a network-based model for proteasome cleavages, trained by

an evolutionary algorithm on cleavages in protein and some peptide substrates

(Nussbaum et al., 1998; Nussbaum et al., in preparation; Niedermann et al., 1995;

Niedermann et al., 1996; Niedermann et al., 1997). Our program performed significantly

better for experimental data than for randomly positioned cuts, suggesting that it extracts

rules inherent to proteasomal cleavages from training data. Besides, it reproduced the

training data with very high accuracy (98-100%). The parameters of the proteasome

model largely reflect the roles of particular AAs in the cleavage motifs determined

experimentally. Prediction of non-training cleavages was tested for some peptide

substrates containing known MHC I ligands. The results indicate our approach to

represent a promising starting point for refined algorithms for proteasomal cleavage and

                                               

4 The positions relative to a cleavage site (↓) are numbered as described by Schechter and Berger

(1967): 

Pk-Pk-1-...-P2-P1 ↓ P1’-P2’-...-Pm-1’-Pm’.
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fragment prediction.

2.3.3 Materials & Methods/Procedures

2.3.3.1 The experimental training data

Before designing a prediction tool, it was necessary to carefully inspect the experimental

training data5. In brief, the experimental setup was as follows: purified 20S proteasomes

were coincubated with a protein substrate (enolase, 436 AAs), enolase fragments were

generated by the proteolytic action of the proteasome, and these fragments were

identified by biochemical methods, allowing to locate proteasomal cleavage sites. Thus,

the experimental data consist of fragments and cleavage sites. The cleavage sites are not

randomly distributed. Hence, the question is: What are the rules for cutting the protein?

Figure 2.3-1:Typical experimental distribution of cuts and fragments

Vertical bars indicate proteasomal cut sites; horizontal bars depict the detected cleavage products.

The cut positions represent the training data for the model proteasomes. The example shown here

illustrates the fragments produced by the yeast double mutant in enolase (taken from Nussbaum et

al. (1998); see 2.2).

In each experiment, a large set (1010) of proteasome molecules of a given type (wild-type,

                                               

5 The training data for the program and some working hypotheses used herein are largely taken

from Nussbaum et al., 1998 (see 2.2). If not stated otherwise, this source is refered to throughout

this section.
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single mutant, double mutants) was exposed to enolase molecules, typically 300

enolase molecules to one proteasome. The experiments show overlapping fragments

(Figure 2.3-1), which can only be explained by assuming that cutting is a probabilistic

event on the level of individual molecules. However, the sample is so large that the

probability of a cut occurring at a given position in enolase can be viewed as a

deterministic parameter.

Due to the biochemical nature of the detection process, some fragments are more easily

detected than others, and there may be undetected fragments and cleavage sites.

Stretches of AA with few detected cleavage sites can be explained in two ways: Either

very few cleavages are made in this region or many cleavages (fragments) of very low

frequency are generated and are hence not detectable (Figure 2.3-2). We thus assume

that the experiment provides information on the most frequent cuts.

Figure 2.3-2: Two ways in which substrate regions with few detected cleavage sites can be
explained

(A) Few cleavages are made, generating few fragments of high abundance. (B) Many cleavages are

performed, thus producing many different fragments of low abundance each, possibly below the

detection limit.

Experiments using short peptide substrates have already demonstrated that cleavage

sites are used with different frequencies (Boes et al., 1994; Niedermann et al., 1995; Dick

et al., 1996). Our training data behave similarly, as suggested by the existence of

overlapping fragments, but relative frequencies of fragments were not determined. This

will affect our modeling approach: There are underlying statistical parameters (cleavage

probabilities at given positions) that until now have not been experimentally determined for

the training data.

Due to these limitations in fragment detection, of the two fragments meeting at one

cleavage site only one may be found. Therefore, the present modeling approach is
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directed towards cleavage sites rather than fragments. We did not to consider fragment

structure, although overlapping fragments exist. Instead we simulated the observed cut
patterns. We shall return to the problem of overlapping fragments below.

2.3.3.2 The model

A (possible) cleavage always occurs between two positions (two AAs). A “cut after

position i” denotes a cut between positions i (e.g. Y190) and i+1 (e.g. H191). With respect

to a (possible) cleavage site, these positions are also denoted by Pk,...,P1,P1’,...,Pm’. If a

peptide and cut positions are presented to us at random, then the AA in position Pi (Pi

ranging over Pk,...,P1,P1’,...,Pm’) is a random variable assuming the values A, C, D,..., Y,

representing the twenty AAs in the one-letter code. Thus, X3’ = G is the third position after

the cut when occupied by the AA G.

A simple random cutting device would inspect the positions successively (or

simultaneously) and would cut with a certain probability P∈(0,1), regardless of which of

the possible twenty AAs occupy the positions and independently of any other cuts; the

lengths of the fragments would follow a geometric distribution. This is clearly not the case

in the experimental situation (Nussbaum et al., 1998; Kisselev et al., 1999a). More

sophisticated devices would either A) use distance information, e.g. the distance from the

previous cut, or B) neighborhood information, e.g. the AAs adjacent to the prospective

cleavage position. Neighborhood information could be limited to the pair P1/P1’ or

comprise a wider window, Pk-Pm. For these more sophisticated devices, the proteasome

would either A) work on the positions successively and cut with probability Pν, if ν is the

distance from the previous cut, or B) cut at a position with a probability depending on the

AAs in P1 and P1’, but not on any previous cuts. In this case P(X1,X1’) is a measure for the

affinity of the adjacent AAs to the active site of the proteasome. In even more complex

devices, the probability of cutting would depend on previous cuts plus neighborhood

information. Many of these suggested cleavage mechanisms will be rather artificial and

will not provide insight because enolase is just one given protein of finite length: The total

experimental data on cuts and fragments can be encoded in many different ways in terms

of distance and neighborhood information. Thus, one encounters the usual problem of

biological modeling: A detailed model with many parameters can reproduce a finite data

set exactly but does not provide any information on the underlying biochemical

mechanism. Consequently, simple and plausible hypotheses on proteasomal cleaving

should be specified. These hypotheses should be minimal (i.e., simpler models cannot

explain the observed features) and there should be a nontrivial test for the model.
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Therefore we proceeded as follows: First, a hypothesis was formulated for the

mechanism. Then a model proteasome was designed in the form of a “neural network”

and trained on the experimental data in order to yield an optimal parameter set. The

training procedure can also be viewed as an evolutionary algorithm to determine an

appropriate model proteasome. Finally the performance of this optimized model

proteasome was tested.

As a working model, the following hypothetical mechanism was chosen: The enolase

molecule is inserted into the proteasome starting with its N-terminus (for notational

convenience, the results do not depend on the direction) and is then threaded along the

proteolytic sites. According to the findings that there are no statistically significant effects

of positions Pi or Pi’ with i>6 or i’>6 (Nussbaum et al., 1998), it is suggested that the

decision for a cleavage is based on local properties of the substrate molecule. Obviously,

the P1/P1’-pair plays a prominent role in this process (e.g. combination LT appears four

times and is cleaved four times; double mutant). However, if a cutting algorithm is based

on these positions alone, the performance will be rather poor (e.g. combination SK
appears six times, but is only cleaved three times; double mutant).

In detail, our proteasome model is based on the following hypotheses:

In determining whether to cut or not, the proteasome inspects only a neighborhood

Pk...P1 | P1’...Pm’ of the prospective cleavage site; k and m are fixed small numbers ≤ 6.

The main effect results from the affinity of the pair of AAs in the P1 and P1’ positions to

the active subunits in the proteasome. This effect is modeled by an affinity parameter

α1(X1,X1’). This parameter is not an affinity of the two AAs per se but affinity when

exposed to the active sites of proteasome. The value -α1(X1,X1’) could be interpreted as

an affinity of the pair of AAs to the active sites of the proteasome, i.e., a negative α1

indicates a positive influence on cleavage.

Each of the positions Pi, i=2,...,k, (or Pi’, i=2,...,m,) exerts an affinity αi(Xi) (αi’(Xi’)) towards

the prospective cut which depends on Xi (Xi’) but not on the AAs at the other positions.

The affinities can be positive, negative, or zero.

The model is additive: The total affinity at the position considered is
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Notice that the two sums start with i=2, i.e. there is no additional affinity parameter for
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positions P1, P1’.

The probability of a cut depends only on the total affinity δ. The cutting process is

deterministic: The probability of a cut is equal to 1 if δ is negative or zero and it is equal to

0 if δ is positive (choosing the threshold zero is a mere normalization). Of course,

assumption 5 excludes the occurrence of overlapping fragments (in contrast to the
experiments).

2.3.3.3 The learning process

For a given set of affinities, the model proteasome will work along the enolase and apply

the local rule consecutively to each position from k to n-m, where n is the length of the

substrate. Thus, following assumption 5, it will always perform certain (the same) cuts in

enolase. Then, comparing the results with the experimental data, for each position there

are four possibilities: A) There is no cut in the experimental data and the model

proteasome did not cut. B) There is a cut in the data and the model did indeed cut. C)

There is a cut in the data but the model did not cut (missing cut). D) There is no cut in the

data but the model did cut (superfluous cut).

A stochastic hill-climbing algorithm (evolutionary algorithm) was used to train the network,

and for this purpose a measure was chosen to “tell” the network how good or bad its

present performance was. The choice of the measure was somewhat arbitrary (for the

lack of biochemical or mathematical guidelines for judging the performance), but we felt

that a superfluous cut is less significant than a missing cut. Hence the performance
measure was defined as:

F = K ×  the number of missing cuts + the number of superfluous cuts,

where typically K = 2. Choosing K > 1 amounts to penalizing missing cuts. A good

performance correlates with a small number F, and the data are reproduced if F=0 has

been achieved. The training algorithm works as follows, starting from an arbitrary or

suitably chosen initial affinity configuration and the corresponding number F, called F0.

1. Store the present affinity configuration and compute a new affinity configuration

by applying a random perturbation.

2. Compute the value F for the new affinity configuration and call it F1.

3. If F1 ≤ F0 then store the new affinities and go to 1.

4. If F1 > F0 then keep the old affinities and go to 1.
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The training process obviously depends on the choice of the random variations. If k=5

and m=1, for example, then we have 20×20 (for the AAs in pair P1P1') + 4×20 (for

positions P5-P2) = 480 parameter values. Thus, a hill-climbing algorithm is applied to a

landscape on a space with dimension 480; this space is very large and there is no way to

explore it by a deterministic screening procedure. We decided to vary only one parameter

(affinity) at a time (i.e., in the parameter space, each variation is parallel to a coordinate

axis). Varying several parameters at a time did not accelerate the optimization process

(data not shown). Thus, in the algorithm a parameter is chosen at random, and then a

number from the uniform distribution on some interval [-ε,ε] is selected, where ε may even

depend on the affinity in question. The length ε, measuring the variance of the

perturbations, has to be carefully selected. If ε is too small or too large, the process will

take very long to approach a local optimum or will often skip over it, respectively. In the

actual program, non-constant variance was adapted to the temporal increase of the goal

function F.

Since the unknown parameters vary over a continuum and the goal function F assumes

entire values, the goal function is constant on certain sets and a unique optimal parameter

configuration cannot be expected. In general there is a whole set in the parameter space

such that all configurations in this set produce the same result. This observation

corresponds to biochemical reality, where slight variations in non-essential parts of the

proteasome would probably not lead to malfunction of the enzyme. In principle, there

could be parameter configurations in quite distant regions of the parameter space which
also produce F=0.

As with any hill-climbing optimization procedure, good initial guesses do provide

assistance. We chose the following approach based on the relative frequencies of AA

pairs around cleavage sites: For two AAs X1 and X1’ let S = S(X1,X1’) be the frequency of

the pair X1X1’ in the substrate and C = C(X1,X1’) be the frequency of cleaved pairs. If S > 0

then α1(X1,X1’) = 2(1-2C/S), and otherwise equals zero. Similarly, let Si = Si(Xi) be the

frequency of Xi (up to an error near the terminus, this number is the frequency of Xi in the

substrate) and let Ci = Ci (Xi) be the frequency of Xi in position Pi such that a cut is

performed at P1. Then the initial guess is α4(X4) = 2(1-2C4/S4) and α5(X5) = 0.5(1-2C5/S5).

We chose αi = 0 for all other positions.

2.3.3.4 Testing the model

As explained earlier, our goal is to obtain a proteasome model rather than a mere
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computational device or statistical analysis. There are about 2.5×1010 potential

octameric peptide sequences of which only about 500 occur in enolase (later, the cutting

algorithm is based on such octamers, see next section). If the model proteasome just

extracted information and reproduced the cuts, then it should perform similarly on

experimental and random data sets. However, if the model proteasome recognized

inherent rules in the experimental data, it should perform better on experimental training

data.

To test this hypothesis, we compared the performance of the model on artificial, randomly

distributed cleavage sites as opposed to cleavages generated by yeast wt 20S

proteasomes in enolase, in each case 105 cleavages. Ten independent runs were

performed for each and the F value was checked after 200,000 steps. The algorithm

reproduced the experimental data significantly better than the random cuts (p=0.00026):

The mean F-value for the experimental cleavages was 1.9 versus 8.8 for the random cuts

(Figure 2.3-3).

Figure 2.3-3: Performance of algorithm when fed with random cleavage data (circles) or yeast
wt proteasome cleavages in enolase (squares).

The training data comprised 105 cleavages, both for the experimental data generated with yeast wt

proteasomes and for the randomly selected data. Dashed lines: mean values of ten independent

runs. The results shown were reached after a constant number of 200,000 iteration steps.
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Interestingly, for the experimental data only superfluous cuts contributed to F, i.e., the

model recovered all training cleavages and made some additional cuts (data not shown).

On the other hand, for random cleavage data, the high value of F resulted from both

superfluous and missing cuts (with respect to the training data) although the latter were

strongly penalized during the learning process. Similar results were obtained for two more

sets of randomly selected cuts (data not shown). Thus, the model performs better on

experimental data and for these it recovers all cuts. These findings demonstrate on the

one hand that our concept of cleavage affinities leads to a working model, even with

relatively few parameters. On the other hand, they show that the experimental cleavage

data (proteasome cuts in enolase) contain a large amount of hidden regularity that can be

extracted by the present algorithm.

2.3.4 Results

2.3.4.1 Reproduction performance

Our method was applied to experimental cleavage data generated by different 20S

proteasomes (yeast wild-type, single mutants, double mutant, human wild-type) in the

substrate enolase (Nussbaum et al., 1998; Nussbaum et al., in preparation), yielding

different model proteasome “species” ## 1-8 (Table 2.3-1).

In initial attempts, the double mutant data were utilized because of their “cleavage

homogeneity”. The decision to cut was based on information from the octameric interval

P4,...,P4’, i.e. k = m = 4. An initial parameter configuration was based on the frequencies

of AAs in P1 and P1’ around cleavage sites in the experiment. This rather crude

approximation led to a value F = 72 (with K = 2), which appears rather weak, but is far

from the performance of an arbitrary parameter configuration. After approximately 194.000

steps of the training algorithm, an optimal solution with F = 0 was reached. When the

search for a good initial choice was automated as outlined above, the same result was

obtained after 176.000 steps. In all subsequent runs, automated initial guesses were used

(data not shown).

In an attempt to gradually reduce the number of parameters, both shorter intervals and

intervals with “holes” were used. These attempts were made by trial and error, guided by

the statistical analysis of cleavage sites. The intervals P6,...,P1’,P4’ (65.000 steps),

                                               

6 The p-value was determined by a two-sided, paired Student’s t-test.
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P5,...,P1’,P4’ (71.000) and P4,...,P1’,P4’ (80.000) indicated that shorter AA windows

contain sufficient information for the correct reproduction of the training data, and that P5

seems to play an important role for β5/Pre2. Choosing the interval P5,...,P1’ reduced the

number of steps further to 36.000 (Table 2.3-1), suggesting that positions P2’-P4’ contain

information that obscure the data and hence decelerate the process. It also shows that the

positions N-terminal (“to the left”) of the cleavage site seem more important than the ones

C-terminal (“to the right”) of the cleavage. (It should be emphasized that the number of

iteration steps is not entirely relevant for the biological  problem or interpretation, since it

depends on the quality of the initial guess. These numbers are quoted to give an

impression of how a training algorithm behaves in spaces of very high dimensions.)

Similarly, for all model proteasomes other than the double mutant, the interval

P6,...P1’,P4’ turned out to be the most suitable for the reproduction of the experimental

data. (Note that positions P2’, P3’ were left out.) Particularly, the data generated with

human proteasomes are badly reproduced when P5 and especially P4 are not included in

the interval (data not shown). The results of the reproduction performances are

summarized in Table 2.3-1.

A substrate molecule of finite length only contains a finite amount of information as far as

cleavage data are concerned. A set of affinity parameters reproducing data for one

sequence might not be suited for other sequences. A finite set of training data might

“teach” the program rules specific only for the training data. The capacity for generalizing

the model proteasomes should thus improve if the set of training data is extended.

Therefore, for two model proteasomes (#7 and #8), the cleavage data of two short

ovalbumin-peptides (Niedermann et al., 1995; Niedermann et al., 1996; Niedermann et al.,

1997) were added to the enolase cleavage data generated by human proteasomes (for

the reproduction performances see (Table 2.3-1).

The different proteasome models reproduce their training data with nearly perfect scores

(98-100%). The majority of the wrongly assigned cuts are superfluous cuts and could

theoretically represent cuts that remained undetected in the experiment. The system

simulating the yeast double mutant 20S proteasome (β5/Pre2+) uses the shortest interval

(P5,...,P1’) to assess the cleavages, probably reflecting the fact that these cleavages are

performed by one single proteolytic activity, thus rendering the training data rather

homogeneous. For wild-type and single mutant proteasomes the cleavages are generated

by three and two different proteolytic activities, respectively. The training data are

therefore expected to be less homogeneous, which could be a reason why a wider interval
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(P6,...,P1’,P4’) is needed. This inhomogeneity might be brought about by the need for

the active sites β1/Pre3 and/or β2/Pup1 to inspect a wider environment of the substrate.

Table 2.3-1: The reproduction performance of the model proteasome

performance §

No.
proteasome

species*

experi-
mental

cleavages
positions

considered
# of

steps ‡ correct
not

found
super-
fluous

% correctly
reproduced

#1 yeast wt 105 P6-P1’, P4’ 116,000 105 none none 100

#2 yeast β5/Pre2- 95 P6-P1’, P4’ 297,000 95 “ “ 100

#3 yeast β2/Pup1- 80 P6-P1’, P4’ 270,000 80 “ “ 100

#4 yeast β1/Pre3- 88 P6-P1’, P4’ 500,000 88 “ “ 100

#5 yeast β1/Pre3-

 β2/Pup1-
73 P5-P1’ 36,000 73 “ “ 100

#6 human wt 117 P6-P1’, P4’ 275,000 117 “ 2 99.5

#7 human wt+  || 136 P6-P1’, P4’ 500,000 136 “ 4 99.2

#8 human wt+  ¶ 151 P6-P1’, P4’ 445,000 150 1 4 98.9

* 20S species used to generate cleavages  in enolase; + additional training data;

‡ number of iteration steps until the reported performance was reached

§ reproduction performance reached after so many steps of the algorithm; the three columns on the

left refer to the cleavages made by the algorithm, the %-value in the right column refers to all

possible cleavage sites (theoretical number of cleavage sites in enolase: 427 = 435-(k+m)+2)

|| learning data: cleavages in ovalbumin peptides 37-77 and Y249-269 [human 20S] (Niedermann et

al., 1997) + enolase data [20S from human erythrocytes] (Nussbaum, in preparation; see 2.2.9)

¶ learning data: the most dominant cleavages in ovalbumin peptides 37-77 and 239-282 [human and

mouse 20S] (Niedermann et al., 1995; Niedermann et al., 1996; Niedermann et al., 1997) + enolase

data [20S from human erythrocytes] (Nussbaum, in preparation; see 2.2.9)

In brief, theoretical proteasomes, which do not produce overlapping fragments, were able

to reproduce the experimental cleavage data with 98-100% accuracy. A minimal window

size of 6-10 AAs, containing 6-8 individual AA positions, provided sufficient information for

highly accurate reproduction. Using experimental data from proteasomes bearing more

than one active site seems to complicate the cutting rules and therefore requires a wider

window for the reproduction, probably reflecting the fact that three different proteolytic

specificities operate in eukaryotic proteasomes.
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2.3.4.2 Computed affinities

Will the affinities of an optimal solution (F=0) yield information on the “physical” nature of

the cleaving process? As stressed previously, there is no unique optimal affinity

parameter configuration. Indeed, for the same problem with the same initial guess,

different optimal solutions are found due to the stochastic nature of the search process.

Although these optimal solutions vary in detail, some characteristic affinity patterns do

emerge. In order to “extract” these characteristics, mean values of affinity parameter

configurations were computed, and the results were compared to the experimental

findings.

First 1α , a measure for the influence of the P1 position on cleavage, based on the P1,P1’

pair affinity in the optimal solution, was introduced:
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These values were then averaged over the set of the runs of evolutionary algorithm. For

the yeast wt proteasome, the results are presented in Table 2.3-2, similarly for positions

P1’ and P4.

For position P1, large hydrophobic AAs (F, L, W) and the basic AA R were found to

promote a cleavage by the program. This is in line with the experimental results (L and R

promoting cleavage). A similar agreement was found for the AAs inhibiting a cleavage

when appearing in P1: For both the program and the experimental data, G was the most

cut-inhibiting AA in P1. For position P1’, the program found P, R, Y, and F to be cut-

promoting, whereas the large branched AAs V, L, and I,  as well as the acidic ones E and

D, were cut-inhibiting. This is in agreement with the experiments, where β-turn-promoting

AAs (e.g. P) are enriched at P1’ and large AAs are rare at P1’ (e.g. V, L, I). The cut-

promoting influence of R in P1’ in the program could reflect the preference of the

chymotryptic site Pre2 for basic AAs at this position. The reason for the cut-promoting
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influence of the large aromatic AAs Y and F at P1’ is currently unclear. As our group,

as well as others, (Nussbaum et al., 1998; Shimbara et al., 1998) have already reported

on the influence of P at P4, it was interesting to find the cleavage-promoting power of P in

P4 in the program. On the other hand, H in P4 seems to strongly inhibit cleavage, a result

not observed in the statistical analysis of the experimental data. We are currently

examining experimentally whether there is a cut-inhibiting influence of H in P4.

Table 2.3-2: Cleavage characteristics of yeast wild-type proteasomes deduced from computed
affinity parameters

positive effect on cleavage negative effect on cleavage

position computed
affinities

experimental
results*

computed
affinities

experimental
results*

P1 F, L, W‡, R

(I, Y)

L, R G, K, P, Q, N

(A, T, M‡, S)

G

P1’ P, R, Y, F, M‡

(K, T)

small, β-turn V, L, I, E, D

(W‡, S, G)

 ---

P4 P P H ---

Strength of AA influence in descending order from left to right. AAs in brackets only show a minor

influence. The affinity parameters for the AA cystein, which only appears once in enolase, are prone

to a large variance and were not included in the table.

* determined by statistical analysis of cleavage data (hypergeometric distribution)

‡ low frequency in enolase (n=5); large variance of computed affinity parameters possible

In conclusion, the cleavage motifs of the model proteasome, i.e., the rules the program

has learned to reproduce the training data, can be extracted from the computed affinity

parameters in order to gain insight into the biochemical mechanism. For the yeast wild-

type proteasome, they largely reflect the results obtained from statistical analysis of the

experimental data. Some differences between computed affinity parameters and

experimental results were detected. Such variances can serve as working hypotheses for

experimental investigations.

2.3.4.3 Number of cleavages predicted in proteins

The number of proteasomal cleavages in proteins has been estimated by a calculation

using the experimentally determined mean fragment length (Kisselev et al., 1998; Kisselev
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et al., 1999a). However, this indirect approach does not account for the presence of

overlapping fragments. We found many more cleavages by yeast and human 20S

proteasomes in enolase than predicted by the above method (Nussbaum et al., 1998;

Nussbaum et al., in preparation; Toes et al., in preparation). We therefore had our

program theoretically cleave protein substrates of different lengths (results depicted in

Figure 2.3-4). The program trained on cleavages in enolase generated by human 20S

proteasomes “cleaved” the test substrates with a frequency of about 33 cuts per 100 AAs

in the substrate molecule, 2.5 times more cuts than proposed before (Kisselev et al.,

1999a). According to the above mentioned method, 22 cuts are made in casein by

mammalian 20S proteasomes (Kisselev et al., 1999a), whereas we found 50-60 cuts by

individual fragment detection (Emmerich et al., in preparation). The program predicted

about 64 cuts. We therefore conclude that our program mirrors the number of 20S
cleavages in protein substrates more realistically than previous methods.

The regression line for the number of cleavages versus protein length does not go through

zero. If this effect is relevant at all, then it possibly indicates that short peptides are bad

substrates, as reported before (Dolenc et al., 1998). The number of predicted cleavages

clearly depends on the AA composition of the test substrate, as suggested by the strong

deviation of the number of cleavages predicted in Epstein-Barr-virus nuclear antigen 1

(EBNA1), a viral protein of 641 AAs, from what would be expected (Figure 2.3-4). A

glycine-alanine repeat region (GARR) of approximately 240 AAs in EBNA1 is the reason

why EBNA1 is not degraded by proteasomes in EBV-infected cells (Levitskaya et al.,

1995; Levitskaya et al., 1997; Sharipo et al., 1998). Our model proteasomes on average

only perform 7 cleavages in the 240 AAs of this repeat. This can be explained by the

influence of the AA G, which is known to be cut-preventing in P1 (Table 2.3-2). Our

experimental data agree with this finding: peptides containing short GARR’s are hardly

ever cleaved within the GARR’s (Nussbaum, unpublished observations). Also the

deviation of the number of expected cuts from the regression line of predicted cuts could

stem from the program using actual sequence information, as opposed to length

information, to decide about cuts. Moreover, it could reflect the fact that it is easier to find

cleavages in short proteins in the experimental setup (because there are fewer

fragments), while the program is not limited by the number of fragments.
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Figure 2.3-4: Number of cleavages predicted in proteins of different lengths.

The results for the predicted cuts are a mean value of 7 programs (error bars indicate standard

deviations). The number of expected cuts (dashed line) was calculated by applying the enolase-

specific ratio of cuts per AAs (117 cuts/436 AAs) to other substrates. The number of cuts produced

by Thermoplasma 20S (dotted line) and rabbit 20S (dash-dot) are taken from Kisselev et al. (1998)

and Kisselev et al. (1999a), respectively. Test substrates: lactalbumin (123 AAs), bovine β-casein

(209), influenza A matrixprotein (285), ovalbumin (385), E.coli alkaline phosphatase (471), influenza

A nucleoprotein (479), and EBNA3 (812). EBNA1 (641) was not included in the regression of the

predicted number of cuts.

In summary, based only on cuts made in enolase, our program predicts the number of

cleavages in other test substrates more realistically than previous methods, as indicated

by the comparison with experimental cleavage numbers in casein. This information is

useful for the estimation of the number of potential MHC I binding peptides generated
during protein degradation.

2.3.4.4 Predicting the generation of MHC I ligands

The true challenge for a prediction device should be the correct identification of individual

cleavages in sequences not included in the training data. For this purpose, a 25mer

peptide of pp89 from murine cytomegalovirus (corresponding to positions 162-186) and a

21mer peptide from murine JAK1 tyrosine kinase (positions 348-368) were chosen,

because they contain MHC I ligands and are common experimental proteasome

substrates. They were cleaved by model proteasomes #6-8 (described in Table 2.3-1) and
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the performance was assessed (Table 2.3-3).

Table 2.3-3: Predictive power of the algorithm in peptides containing MHC I ligands

Cleavage performance in peptide sequences (pp89 (a) and JAK1 (b)) containing known MHC I

ligands. lit.: extract of experimental findings as described in Boes et al. (1994), Kuckelkorn et al.

(1995), Groettrup et al. (1996), Dick et al. (1996), Dick et al. (1998). #6-8: model proteasomes

(compare to Table 2.3-1). Short vertical bars indicate cuts; gray coloring indicates experimental cuts

in regions close to the termini that the program cannot predict. Long dotted lines indicate the position

of experimentally observed cuts. The underlined sequences represent MHC I ligands. Calculations

as in Table 2.3-1.

The prediction performance reached values of 75-88% (counting both missing and

superfluous cuts, the latter of which we consider less critical). At first glance, it appears

contradictory that for the pp89-peptide program #7 performs better than program #8

(Table 2.3-3 A), but vice versa for the JAK1-peptide (Table 2.3-3 B). The training data for

program #7 seem to contain information more suitable for the prediction of cleavages in

pp89 than those for program #8, and vice versa for the JAK1-peptide. Presumably, adding

data to the training set improves the prediction performance. A good example is the cut

between L15 and G16 in the pp89-peptide. This cut is not generated by program #6

(trained on cuts in enolase only), probably because the pair LG appears three times in

enolase but is never cut. However, the cut is generated by programs #7 and #8 (trained

on cuts in enolase and ovalbumin-peptides), which can be explained by the appearance of

a cut between L and G in the ovalbumin-peptides. The situation for the JAK1-peptide is

similar. Here, positions other than P1 play the predominant role. One could therefore

performancedata

source

cleavage map

correct not
found

super-
fluous

% correctly
reproduced

lit. R L M Y D M Y P H F M P T N L G P S E K R V W M S ---

# 6 R L M Y D M Y P H F M P T N L G P S E K R V W M S 2 2 4 62.5

# 7 R L M Y D M Y P H F M P T N L G P S E K R V W M S 4 0 2 87.5

# 8 R L M Y D M Y P H F M P T N L G P S E K R V W M S 4 0 5 68.8

lit. R E E W N N F S Y F P E I T H I V I K E S ---

# 6 R E E W N N F S Y F P E I T H I V I K E S 3 2 2 66.6

# 7 R E E W N N F S Y F P E I T H I V I K E S 2 3 3 50

# 8 R E E W N N F S Y F P E I T H I V I K E S 5 0 3 75

1 5 10 15 20 25

1 5 10 15 20

a

b

3 1 3 75



108

conclude that the training data do not yet contain enough information to predict every

single possible cleavage.

In summary, the predictive power of the program is high for certain short test sequences.

Shortcomings of the model proteasomes are likely to be caused by the scarceness of

training data and could be influenced by not considering the effects of in vivo regulators of

proteasome function, e.g. PA28, the 19S cap or interferon (IFN)-γ-inducible subunits. We

therefore assume that by including such data and generally by enlarging the set of training

data the performance of the program will improve.

2.3.4.5 Refined model

As described above, proteasomes use the cleavage sites with distinct preferences, which

can be determined by quantifying cleavage products. However, the cleavage products

(fragments) in enolase, the data our model proteasomes are based on, had not been

quantified. Nevertheless we wanted to refine the model in such a way that a cut is

performed with some probability depending on the flanking AAs. These probabilities were

therefore included as parameters of the model. Again, we chose numbers k and m to

define the neighborhood of the prospective cleavage site. Hypotheses 1-4 were imposed

as before, but property 5 was replaced by a more subtle procedure.

In accordance with the additivity requirement we assume that the probability of a cut does

not depend on all the particular AAs in the neighborhood (as the affinities do) but only on

the total affinity δ. Since the variable δ ranges over the real numbers, we must specify the

probability of a cut in terms of the total affinity δ. Thus a function P(δ) depending on few

parameters was determined by training. It is evident what the properties of P(δ) should be:

P(δ) is a decreasing function, P(δ)→1 for δ→-∞, and P(δ)→0 for δ→+∞. In the previous

case of “deterministic cutting” the function was just P(δ)=1 for δ≤0 and P(δ)=0 for δ>0. For

an initial test one can choose, e.g. κδδ /1
1)(
e

P
+

= , which depends on a positive

parameter κ. In the limit of κ→0 the deterministic cutting can be recovered.

We wanted to choose a simple model to avoid too much arbitrariness when assigning

probabilities to cuts. Thus we defined only two cases: A) A high probability cut is a cut not

overlapped by any fragment, e.g. the cuts after L183, Y190, L193, Y201 and A203 (Figure

2.3-1). B) A low probability cut is a cut overlapped by some fragment (i.e. not every

fragment is cleaved a this site), e.g. the cuts after L196, F252, F253 and Y258 (Figure
2.3-1).
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A goal function for measuring the prediction was introduced as follows: If δ>0, the

probability of cleaving is so low that cleavages will not be observed. Then there is a critical

level δ1<0. If δ<δ1, the probability of cleaving is high. That means fragments containing

(i.e. overlapping) the cleavage site in question will not be observed, because this cleavage

site is always used. If δ1<δ≤0, the probability of cleaving is so far from 0 and 1 that

fragments resulting from cleaving at this site but also fragments overlapping the site can

be found. In view of the homogeneity of our model we can assume that δ1 = -1. An energy

function was chosen to estimate the correctness of the prediction:

  F = 2 × # of missing cuts + # of superfluous cuts + # of wrongly assigned cuts

The refined model was applied to the experimental cleavage data of the yeast double

mutant because of their “homogeneous consistency”. The data were classified according

to the rules described above. First an optimal solution for the mere reproduction of the

cleavages was generated using the positions P6,...,P1’,P4’. Starting from this point, a

parameter set was found which reproduced exactly (F = 0) the training data with their

assigned probabilities (data not shown). This finding demonstrates that, at least in the

case of the double mutant, the network system has sufficient "freedom" to determine, in

addition to cleavage positions, probabilities for cuts to occur. Thus there should be

sufficient freedom to accomodate information on experimental fragment frequencies in the

future. The refined model has not been applied to other experimental data yet.

2.3.5 Discussion

Here we present a simple (one-layer) network capable of generating proteasomal

cleavages in any given AA sequence. For training the network, goal functions counting

missing and superfluous cuts (and cleavage probability in case of overlapping fragments

in a refined model) were used together with a stochastic, hill-climbing optimization

process. Thus, parameter sets were found which reproduced the training data (cuts

performed by 20S proteasomes in enolase plus some cuts in ovalbumin peptides) with

almost perfect scores (98-100% exactness, Table 2.3-1). More interestingly, they

predicted cleavages in two non-training sequences containing MHC I ligands with an

accuracy of 75-87% (Table 2.3-3). Thus, the theoretical proteasomes described here
represent the most successful prediction tool for proteasomal cleavages to date.

The precision with which the training data were reproduced (98-100%) and the much

poorer reproduction performance when applied to a set of random cuts (Figure 2.3-3)

imply that the selected approach is able to extract actual proteasomal cleavage rules
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inherent to experimental training data. A window spanning 10 AAs (positions P6-P4’)

contains sufficient information for this excellent reproduction performance, probably

indicating that only a short stretch of about 10 AAs is “seen” by the inner surface of the

proteasome at the site of cleavage. This result is in line with the experimental data, where

no statistically significant AA effects were observed beyond positions P6 and P6’. It is also

in accordance with Holzhütter et al. (1999), who found no significant influences beyond P8

and P6’. Whether there are long-distance effects on cleavage site selection, as suggested

by Kisselev et al. (1999b), beyond the intervals checked so far, remains to be determined.

The fact that the P-side (AAs P6-P1 needed for the program) is more critical than the P’-

side (P1’, P4’) was detected earlier (Nussbaum et al., 1998; Holzhütter et al., 1999). It

could indicate that the P-side of prospective cleavage sites is more strongly bound by the

inner surface of the proteasome near its active sites than the P’-side. The theoretical

proteasomes relied on parameters similar to the cleavage motifs determined

experimentally, as shown by the correspondence of computed affinity parameters with the

statistical analysis of the experimental data for yeast wt proteasomes (Table 2.3-2). This is

especially true for the preference for large hydrophobic AAs (F, L, W) in P1, the cut-

inhibiting influence of G in P1, and the accumulation of P in P4. Thus, the program has not

reproduced the training data “by chance”, but by applying supposedly proteasome-specific

rules. Certain affinity parameters the program uses to decide for or against a cleavage

differ from the ones observed experimentally. We cannot exclude that artifacts imposed by

the nature of the training algorithm are to blame in such cases. However, in these cases,

the influence of the AAs in question can be tested experimentally. An example for this is

the cut-inhibiting effect of the AA H at P4, which we are now examining by in vitro peptide

digestions. Thus, the program can provide working hypotheses to be explored

experimentally and thereby possibly accelerate the investigation process.

Other important aspects of our approach are the homogeneity and the size of the set of

training data. In a previous approach, published cleavage data from different literature

sources were used as training data of an algorithm (Holzhütter et al., 1999). The data

encompassed roughly 200 scissile peptide bonds and had been generated under

dissimilar experimental conditions (source of 20S, IFN-γ-treatment, incubation times). It

cannot be excluded that these differences influenced the proteasomal cleavage pattern.

We thus based our model largely on cuts generated in one single experiment, forming a

set of around 400-500 scissile peptide bonds. The likelihood of experimental variations

and statistical artifacts should therefore be low.
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The number of cleavages in proteins predicted by the program (Figure 2.3-4) very

accurately reflects the occurrence of overlapping fragments, as suggested by the

comparison with the number of cuts we found in casein (Emmerich et al., in preparation).

Previous attempts to determine cleavage frequencies in protein substrates yielded

considerably lower numbers of cleavages, probably due to the fact that they had been

determined indirectly (by calculation) instead of directly by fragment identification, thereby

not giving full credit to the presence of overlapping fragments (Kisselev et al., 1998;

Kisselev et al., 1999a). As the number of possible cleavage sites will determine the

number of different peptides generated, our program reflects this point of interest for

immunological questions more realistically.

Typically, a limited window containing 8 AAs (positions P6,...,P1’,P4’), or altogether about

500 parameters, was sufficient to reproduce the training data. Similar networks usually

contain an enormous set of free parameters (Chou et al., 1996; Thompson et al., 1995)

which do not reflect the biochemical nature of the process under investigation. Keeping

the number of free parameters to a minimum prevents the program from putting too much

weight on minor characteristics and makes it easier to extract rules and to interpret their

meaning for the biological process.

Our program predicts cleavages on the basis of AA “names”, not AA properties such as

volume or hydrophobicity, as in Holzhütter et al. (1999). The significance of such

properties might hence be underestimated by our approach. However, AAs can be

classified according to many additional characteristics such as polarity, tendency to

promote β-turns, positive or negative charge, etc. Thus we felt that a sequence of AAs in

the one-letter code possibly contained important information beyond selected traits. In

order to avoid overlooking this information, our training data were in the form of AA

sequences in the one-letter code. This code can be translated into AA characteristics to

test for the influence of selected side chain properties (e.g. the proline-effect at P4 is

probably caused by the kink-inducing properties of this AA, not by its size or

hydrophobicity). In the above mentioned approach, two AA properties were sufficient to

yield satisfactory results, suggesting that proteasomes only check a limited amount of AA

features to decide for or against a cleavage. However, before this point is resolved, we

consider it premature to base an automated prediction device on selected properties only.

The predictive power of the program is not strong for all test data, e.g. the cuts at the C-

termini of MHC I ligands (data not shown). It is possible that test data consisting of

selected MHC I ligands do not fit our program because the involvement of trimming
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proteases different from proteasomes in the generation of the C-termini of MHC I

ligands cannot be excluded (Elliott et al., 1995). However, from examining falsely

predicted cuts in different types of test sequences, it is more likely that the lack of a larger

set of training data is responsible (data not shown). Many “cases”, i.e. AA sequences, do

not exist in the training data. For example, only 214 AA pairs, i.e. 54% of all possible 400

(theoretical P1,P1’-) pairs, occur in enolase. Therefore, in judging a prospective cut site,

the program will base its decision partly on chance. It should consequently be possible to

improve the predictive power of the program by increasing the set of training data. For this

purpose we are currently generating more cleavage data in new protein substrates, using

the same conditions as for the enolase data in order to guarantee the homogeneity of the

training data.

Studies on in vivo antigen processing indicate that, for certain CTL-epitopes, proteasomes

only participate in the generation of their C-termini and that their N-termini can be trimmed

to the correct size by cytosolic or ER-resident aminopeptidases (Craiu et al., 1997; Stoltze

et al., 1998; Paz et al., 1999; Mo et al., 1999). However, a recent report claims that

proteasomes do generate both termini of CTL-epitopes (Lucchiari-Hartz et al., 2000). It is

therefore possible that antigen processing contains an epitope-specific component and

that the prediction of proteasomal cleavages will turn out to be valuable only for the C-

terminus of certain CTL-epitopes.

At present the program is only able to predict cleavage sites, not individual fragments, and

does not “know” about overlapping fragments. However, fragment prediction will be more

useful for the application to immunological questions than just cut prediction. Also, the

program only generates deterministic cuts (in the basic model) or cuts based on estimated

probabilities (in the refined model) at the moment. Both shortcomings should be overcome

by using quantified cleavage fragments as training data. Quantitation will provide the

network with probabilities for cleavages and for fragments to occur, a necessity for

probabilistic cut and fragment prediction. As predicted cuts and fragments will be coupled

to defined probabilities for them to occur, the presence of overlapping fragments will no

longer pose a problem. The new cleavage data currently being generated are therefore

quantified on a routine basis.

In summary, we have created automated prediction devices for cuts by yeast and human

20S proteasomes. They reproduce their training data nearly perfectly and show strong

predictive power in selected test substrates. The program provides information on the

functioning of “real” proteasomes, which mirror experimental findings (e.g. number of
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cleavage sites in proteins, cleavage motifs) better than previous approaches.

Shortcomings in the prediction of individual cuts are likely to be caused by the limited

amount of training data. However, as network-based prediction programs can

continuously be fed with new training data, the predictive power of the program should

improve as new experimental data are incorporated. The program therefore represents a

suitable format for the development of fragment prediction programs. It can be tested in

the future in combination with existing programs for the prediction of MHC I ligands to

improve the forecast of CTL-epitopes.

2.3.6 References

Ahn, J. Y., Tanahashi, N., Akiyama, K., Hisamatsu, H., Noda, C., Tanaka, K., Chung, C. H.,

Shimbara, N., Willy, P. J., Mott, J. D., Slaughter, C. A. and DeMartino, G. N. (1995). Primary

structures of two homologous subunits of PA28, a gamma- interferon-inducible protein activator of

the 20S proteasome. FEBS Lett.  366, 37-42.

Akopian, T. N., Kisselev, A. F. and Goldberg, A. L. (1997). Processive degradation of proteins and

other catalytic properties of the proteasome from Thermoplasma acidophilum. J. Biol. Chem. 272,

1791-1798.

Arendt, C. S. and Hochstrasser, M. (1997). Identification of the yeast 20S proteasome catalytic

centers and subunit interactions required for active-site formation. Proc. Natl. Acad. Sci. USA, 94,

7156-7161.

Baumeister, W., Walz, J., Zuhl, F. and Seemüller, E. (1998). The proteasome: paradigm of a self-

compartmentalizing protease. Cell 92, 367-380.

Boes, B., Hengel, H., Ruppert, T., Multhaup, G., Koszinowski, U. H. and Kloetzel, P. M. (1994).

Interferon gamma stimulation modulates the proteolytic activity and cleavage site preference of

20S mouse proteasomes. J. Exp. Med. 179, 901-909.

Chou, K. C., Tomasselli, A. G., Reardon, I. M. and Heinrikson, R. L. (1996). Predicting human

immunodeficiency virus protease cleavage sites in proteins by a discriminant function method.

Proteins 24, 51-72.

Craiu, A., Akopian, T., Goldberg, A. and Rock, K. L. (1997). Two distinct proteolytic processes in

the generation of a major histocompatibility complex class I-presented peptide. Proc. Natl. Acad.

Sci. USA 94, 10850-10855.

Daniel, S., Brusic, V., Caillat-Zucman, S., Petrovsky, N., Harrison, L., Riganelli, D., Sinigaglia, F.,



114

Gallazzi, F., Hammer, J. and van Endert, P. M. (1998). Relationship between peptide

selectivities of human transporters associated with antigen processing and HLA class I molecules.

J. Immunol. 161, 617-624.

Dick, L. R., Moomaw, C. R., DeMartino, G. N. and Slaughter, C. A. (1991). Degradation of oxidized

insulin B chain by the multiproteinase complex macropain (proteasome). Biochemistry 30, 2725-

2734.

Dick, L. R., Aldrich, C., Jameson, S. C., Moomaw, C. R., Pramanik, B. C., Doyle, C. K., DeMartino,

G. N., Bevan, M. J., Forman, J. M. and Slaughter, C. A. (1994). Proteolytic processing of ovalbumin

and beta-galactosidase by the proteasome to a yield antigenic peptides. J. Immunol. 152, 3884-

3894.

Dick, T. P., Ruppert, T., Groettrup, M., Kloetzel, P. M., Kuehn, L., Koszinowski, U., Stevanovic, S.,

Schild, H. and Rammensee, H. G. (1996). Coordinated dual cleavages induced by the proteasome

regulator PA28 lead to dominant MHC ligands. Cell 86, 253-262.

Dick, T. P., Nussbaum, A. K., Deeg, M., Heinemeyer, W., Groll, M., Schirle, M., Keilholz, W.,

Stevanovic, S., Wolf, D. H., Huber, R., Rammensee, H. G. and Schild, H. (1998). Contribution of

proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J.

Biol. Chem. 273, 25637-25646.

Dolenc, I., Seemüller, E. and Baumeister, W. (1998). Decelerated degradation of short peptides by

the 20S proteasome. FEBS Lett. 434, 357-361.

Elliott, T., Willis, A., Cerundolo, V. and Townsend, A. (1995). Processing of major histocompatibility

class I-restricted antigens in the endoplasmic reticulum. J. Exp. Med. 181, 1481-1491.

Groettrup, M., Soza, A., Eggers, M., Kuehn, L., Dick, T. P., Schild, H., Rammensee, H. G.,

Koszinowski, U. H. and Kloetzel, P. M. (1996). A role for the proteasome regulator PA28alpha in

antigen presentation. Nature 381, 166-168.

Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H. D. and Huber, R. (1997).

Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463-471.

Heinemeyer, W., Fischer, M., Krimmer, T., Stachon, U. and Wolf, D. H. (1997). The active sites of

the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J. Biol.

Chem. 272, 25200-25209.

Hershko, A. and Ciechanover, A. (1998). The ubiquitin system. Annu. Rev. Biochem. 67, 425-479.



115

Holzhütter, H. G., Frommel, C. and Kloetzel, P. M. (1999). A theoretical approach towards the

identification of cleavage- determining amino acid motifs of the 20 S proteasome. J. Mol. Biol. 286,

1251-1265.

Jentsch, S. and Schlenker, S. (1995). Selective protein degradation: a journey's end within the

proteasome. Cell  82, 881-884.

Kisselev, A. F., Akopian, T. N. and Goldberg, A. L. (1998). Range of sizes of peptide products

generated during degradation of different proteins by archaeal proteasomes. J. Biol. Chem. 273,

1982-1989.

Kisselev, A. F., Akopian, T. N., Woo, K. M. and Goldberg, A. L. (1999a). The sizes of peptides

generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding

the degradative mechanism and antigen presentation. J. Biol. Chem. 274, 3363-3371.

Kisselev, A.F., Akopian, T.N., Castillo, V. and Goldberg, A.L. (1999b). Proteasome active sites

allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein

breakdown.  Mol. Cell 4, 395-402.

Kuckelkorn, U., Frentzel, S., Kraft, R., Kostka, S., Groettrup, M. and Kloetzel, P. (1995).

Incorporation of major histocompatibility complex--encoded subunits LMP2 and LMP7 changes the

quality of the 20S proteasome polypeptide processing products independent of interferon-gamma.

Eur. J. Immunol. 25, 2605-2611.

Levitskaya, J., Coram, M., Levitsky, V., Imreh, S., Steigerwald-Mullen, P. M., Klein, G., Kurilla, M.

G. and Masucci, M. G. (1995). Inhibition of antigen processing by the internal repeat region of the

Epstein-Barr virus nuclear antigen-1. Nature 375, 685-688.

Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A. and Masucci, M. G. (1997). Inhibition of

ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-

Barr virus nuclear antigen 1. Proc. Natl. Acad. Sci. USA 94, 12616-12621.

Lucchiari-Hartz, M., van Endert, P.M., Lauvau, G., Maier, R., Meyerhans, A., Mann, D., Eichmann,

K. and Niedermann, G. (2000). Cytotoxic T lymphocyte epitopes of HIV-1 nef. Generation Of

multiple definitive major histocompatibility complex class I ligands by proteasomes. J. Exp. Med.

191, 239-252.

Mo, X.Y., Cascio, P., Lemerise, K., Goldberg, A.L. and Rock, K. (1999). Distinct proteolytic

processes generate the C and N termini of MHC class I-binding peptides. J. Immunol. 163, 5851-

5859.



116

Niedermann, G., Butz, S., Ihlenfeldt, H. G., Grimm, R., Lucchiari, M., Hoschutzky, H., Jung, G.,

Maier, B. and Eichmann, K. (1995). Contribution of proteasome-mediated proteolysis to the

hierarchy of epitopes presented by major histocompatibility complex class I molecules. Immunity 2,

289-299.

Niedermann, G., King, G., Butz, S., Birsner, U., Grimm, R., Shabanowitz, J., Hunt, D. F. and

Eichmann, K. (1996). The proteolytic fragments generated by vertebrate proteasomes: structural

relationships to major histocompatibility complex class I binding peptides. Proc. Natl. Acad. Sci.

USA 93, 8572-8577.

Niedermann, G., Grimm, R., Geier, E., Maurer, M., Realine, C., Gartmann, C., Soll, J., Omura, S.,

Rechsteiner, M. C., Baumeister, W. and Eichmann, K. (1997). Potential immunocompetence of

proteolytic fragments produced by proteasomes before evolution of the vertebrate immune system.

J. Exp. Med. 186, 209-220.

Nussbaum, A. K., Dick, T. P., Keilholz, W., Schirle, M., Stevanovic, S., Dietz, K., Heinemeyer, W.,

Groll, M., Wolf, D. H., Huber, R., Rammensee, H. G. and Schild, H. (1998). Cleavage motifs of the

yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc. Natl. Acad. Sci.

USA 95, 12504-12509.

Pamer, E. and Cresswell, P. (1998). Mechanisms of MHC class I-restricted antigen processing.

Annu. Rev. Immunol. 16, 323-358.

Paz, P., Brouwenstijn, N., Perry, R. and Shastri, N. (1999). Discrete proteolytic intermediates in the

MHC class I antigen processing pathway and MHC I-dependent peptide trimming in the ER.

Immunity 11, 241-251.

Rammensee, H. G., Falk, K. and Rotzschke, O. (1993). Peptides naturally presented by MHC class

I molecules. Annu. Rev. Immunol. 11, 213-244.

Rammensee, H. G., Bachmann, J. and Stevanovic, S. (1997). MHC ligands and peptide motifs.

Landes Bioscience, Austin, Texas, USA.

Rock, K. L. and Goldberg, A. L. (1999). Degradation of cell proteins and the generation of MHC

class I- presented peptides. Annu. Rev. Immunol. 17, 739-779.

Schechter, I. and Berger, A. (1967). On the size of the active site in proteases. I. Papain. Biochem.

Biophys. Res. Commun. 27, 157-162.

Sharipo, A., Imreh, M., Leonchiks, A., Imreh, S. and Masucci, M. G. (1998). A minimal glycine-



117

alanine repeat prevents the interaction of ubiquitinated I kappaB alpha with the proteasome: a

new mechanism for selective inhibition of proteolysis. Nat. Med. 4, 939-944.

Shimbara, N., Ogawa, K., Hidaka, Y., Nakajima, H., Yamasaki, N., Niwa, S., Tanahashi, N. and

Tanaka, K. (1998). Contribution of proline residue for efficient production of MHC class I ligands by

proteasomes. J. Biol. Chem. 273, 23062-23071.

Stoltze, L., Dick, T. P., Deeg, M., Pommerl, B., Rammensee, H. G. and Schild, H. (1998).

Generation of the vesicular stomatitis virus nucleoprotein cytotoxic T lymphocyte epitope requires

proteasome-dependent and -independent proteolytic activities. Eur. J. Immunol. 28, 4029-4036.

Thompson, T. B., Chou, K. C. and Zheng, C. (1995). Neural network prediction of the HIV-1

protease cleavage sites. J. Theor. Biol. 177, 369-379.

Uebel, S. and Tampe, R. (1999). Specificity of the proteasome and the TAP transporter. Curr.

Opin. Immunol. 11, 203-208.

2.3.7 Abbreviations
AA(s) amino acid(s)

CTL cytoto xic T-lymphocyte

EBNA1 Epstein-Barr-virus nuclear antigen 1

GARR glycine-alanine repeat region

IFN interferon

MHC I major histocompatibility complex class I
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2.4 PAProC: A Prediction Algorithm for Proteasomal
Cleavages available on the WWW

2.4.1 Summary

The first version of PAProC (Prediction Algorithm for Proteasomal Cleavages) is now

available to the general public. PAProC is a prediction tool for cleavages by human and

yeast proteasomes, based on experimental cleavage data. It will be particularly useful for

immunologists working on antigen processing and the prediction of major

histocompatibility class I molecule (MHC I) ligands and cytotoxic T-lymphocyte (CTL)

epitopes. Likewise, in cases in which proteasomal protein degradation has been indicated

in disease, PAProC can be used to assess the general cleavability of disease-linked

proteins. On its web site (http://www.paproc.de), background information and hyperlinks

are provided for the user (e.g. to SYFPEITHI, the database for the prediction of MHC
class I ligands).

2.4.2 Introduction

Proteasomes are the key players in cytosolic protein degradation. Some of the “waste”

products of this process, peptides of 3-40 amino acids in length, are spared from further

degradation to single amino acids and are translocated by the transporter associated with

antigen processing (TAP) into the endoplasmic reticulum (ER) (Rock and Goldberg, 1999;

Pamer and Cresswell, 1998; Uebel and Tampe, 1999; van Endert, 1999). Whereas the C-

termini of MHC I ligands most likely have to be generated by proteasomes (Craiu et al.,

1997; Stoltze et al., 1998; Mo et al., 1999), cytosolic or ER-resident trimpeptidases can

reduce longer fragments to the correct size of 8-10 aa for them to bind to MHC I and be

presented on the cell surface (Paz et al., 1999; Stoltze et al., 2000). The recognition of

MHC I-bound peptides is responsible for the induction of cytotoxic T-lymphocytes (CTL)

against intracellular pathogens, such as viruses, and against mutated proteins, e.g. in

tumor cells. Thus, it is conceivable that proteasomal cleavage specificity regulates

immune responses, albeit indirectly. It would therefore be beneficial to be able to predict

proteasomal cleavages. In combination with MHC I ligand predictors such as SYFPEITHI

(Rammensee et al., 1999), in particular, proteasomal cleavage prediction should help to

improve the forecast of MHC class I restricted CTL epitopes. More specifically, it could

support researchers seeking CTL epitopes by limiting the number of predicted MHC class

I ligands from protein antigens. In addition, the effect of amino acid mutations in viral or
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tumor-specific proteins on antigen presentation could also be assessed. Proteasomal

cleavage prediction can thus play an important part in rational vaccine design.

It is well-established that altered proteasomal protein degradation can be a factor in

disease processes. A change in the general cleavability of a protein could be one possible

mechanism by which disease-linked proteins are spared from degradation, thus

increasing their intracellular levels and possibly killing cells. EBNA-1, a viral protein from

EBV is spared from proteasomal degradation due to a Gly-Ala repeat region (GARR)

(Levitskaya et al., 1995; Levitskaya et al., 1997). The length of the GARR is critical for this

effect (Dantuma et al., 2000). Our proteasomal cleavage algorithm predicts hardly any

cleavages within the GARR (Kuttler et al., 2000), and short GARRs are not cleaved by

proteasomes in vitro (Nussbaum, unpublished observations). Poly-glutamine (polyQ) –

containing proteins are involved in  neurodegenerative diseases such as Huntington’s

disease (HD) and spinocerebellar ataxias (SCA). Conformational changes in mutant forms

of polyQ-proteins possibly result in altered proteasomal degradation and lead to the

formation of protein deposits (Wanker, 2000; Evert et al., 2000; Zoghbi and Orr, 2000;

Cummings et al., 1998). Again, longer polyQ-sequences more readily cause disease

(Krobitsch and Lindquist, 2000), possibly by more efficiently inhibiting proteasomal

degradation. For disease-linked proteins such as the polyQ-proteins, PAProC can predict

whether proteasomal cleavage specificity might be involved in protein accumulation and

the initiation of disease.

Recently, the first prediction algorithms for proteasomal cleavages were published on

paper (Holzhütter et al., 1999; Kuttler et al., 2000), and a third, neural network-based

approach, has just been completed (Kesmir et al, submitted). In addition, several other

groups are currently working on this intriguing topic.

We now introduce the first publicly available tool for proteasomal cleavage prediction,

PAProC, and present its mode of function. PAProC is a prediction tool for cleavages by

human as well as wild-type (wt) and mutant yeast proteasomes that is based on

experimental cleavage data (Nussbaum et al., 1998; Kuttler et al., 2000). On the PAProC-

web site (http://www.paproc.de), easy-to-handle predictions of proteasomal cleavages in

amino acid sequences can be performed. In addition, background information on

proteasomes and on PAProC and hyperlinks (e.g. to SYFPEITHI, the database for the

prediction of MHC class I ligands) are available.
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2.4.3 Materials & Methods

2.4.3.1 Experimental training data and algorithm

The experimental training data for PAProC have already been described in detail

(Nussbaum et al., 1998; Kuttler et al., 2000). In brief, a non-modified protein (yeast

enolase-1) was incubated with purified yeast or human erythrocyte 20S proteasomes,

resulting in the proteasomal fragmentation of enolase. Enolase fragments were identified

by biochemical methods (fractionation, sequencing, mass spectrometry) and led to the

compilation of a cleavage map (see Figure 2.4-1). All the detected cleavage sites were

then used to train an algorithm, which has recently been described in detail (Kuttler et al.

2000). The algorithm “sees” a window of 10 amino acids around cleavage sites (6 to the

“left”, 4 to the “right”). Based on this amino acid window, the algorithm can reproduce its

training data and, more importantly, is able to predict proteasomal cleavages in

sequences not included in the training data. All the PAProC-predictions mentioned in this

paper are based on algorithms trained with human 20S proteasome data.

Figure 2.4-1: Cleavage map of the degradation of yeast enolase-1 by human erythrocyte
proteasomes

The figure shows the 107 full fragments (horizontal bars) and the 118 cleavage sites (vertical lines)

identified in digests of enolase by human erythrocyte 20S proteasomes. (Solid bars) full fragments of

which both N- and C-termini are known. (Open bars) fragments for which only the N-termini were

identified. See 2.2.9 for details.
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2.4.3.2 Server requirements and programming language

PAProC runs on any common internet browser (successfully tested for Netscape versions

3.0, 4.05, 4.5, 4.7, Microsoft Internet Explorer 5.0 and Lynx). The PAProC algorithm was

written in PERL 5, a standard programming language that guarantees functioning of the

program independent of the users’ computer systems.

2.4.3.3 Comparison of MHC I binding prediction and proteasomal cleavage prediction

of CTL epitopes

The SYFPEITHI database (http://www.syfpeithi.de) (Rammensee et al., 1999) was used

to predict MHC I ligands from the tumor associated proteins HER-2/neu, pmel/gp100, p53

and the influenza (strain A/Japan/305/57) protein hemagglutinin (HA). We then checked in

PAProC if any proteasomal cleavages were predicted to generate the exact C-termini of

the predicted MHC I ligands. This was carried out for all the predicted ligands down to the

SYFPEITHI prediction score of the known CTL epitope with the weakest predicted binding

ability (at the most 75 ligands), or for at least the 20 best predicted binders. Example: For

HER-2/neu, two decameric HLA-A*0201-restricted CTL epitopes are known. Their

predicted MHC I binding scores are 24 and 20, respectively. We therefore checked all the

predicted binders, from the highest score (in this case: score 29) down to the score for the

known CTL epitope with the weakest predicted binding ability (here: score 20), for C-

terminal cleavage in PAProC and came up with 38 peptides. For influenza HA, where all

known CTL epitopes fell into the first few predicted ligands, we checked the predicted

cleavages for the 20 MHC I ligands with the highest predicted binding scores.

2.4.4 Results

2.4.4.1 Sequence submission

We have recently described the development of an algorithm for the prediction of

proteasomal cleavages (Kuttler et al., 2000) and have now incorporated it into a publicly

available web site, the Prediction Algorithm for Proteasomal Cleavages (PAProC),

available at http://www.paproc.de. The homepage of PAProC is also the submission page

for amino acid sequences (Figure 2.4-2). From this page, information on the functions of

PAProC and on proteasomes can be accessed.

Amino acid sequences must be entered in the one-letter code, e.g. as FASTA- or original

SWISS-PROT-format. With the exception of letters coding for aa, spaces, numbers and

carriage returns, PAProC will not tolerate additional characters in the sequence. A
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sequence name can be entered that will appear on the result output form for user

information only. A proteasome species (human or yeast) must be selected before

submission. For the human proteasome, it is possible to choose between three predictors

based on slightly different training data (type I: based only on cleavages in enolase; types

II + III: based on cleavages both in enolase and in different ovalbumin peptides). For the

yeast proteasome, it is possible to choose between predictors trained with wt or different

mutant proteasome data. Please refer to (Kuttler et al., 2000), for detailed information.

The default setting for the proteasome species is human proteasome type III.

Figure 2.4-2: Entry and submission web site of PAProC

The entry and submission web site of PAProC displays spaces for sequence entry and click buttons

for prediction and result output options. It additionally provides links to background information for the

first-time user.

As PAProC needs a window of at least 6 aa N-terminal (“to the left”) and 4 aa C-terminal

(“to the right”) of the cleavage site of interest, the minimum length for submitted

sequences is 10 amino acids. Within a 10 aa sequence, PAProC can only predict the

cleavage between positions 6 and 7.

In order to fill in blanks in submitted sequences or to prolong short sequences to reach the
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minimal length of 10 aa, the letter “X” (or “x”) can be used as a wildcard. Please note

that “X” has a neutral (zero) effect on the cleavage decision by PAProC.

2.4.4.2 Results output

Figure 2.4-3: Two formats for result output

There are two output formats for results: Short form (A, C) and long form (B). The short format is

more graphical and displays predicted cleavages as red, vertical bars, inserted into the submitted

sequence. The long format gives in a tabular form detailed information on cleavage positions and

approximate cleavage strength. Examples: (A, B) cleavages predicted in a CTL epitope-containing

peptide from murine cytomegalovirus pp89 IE-protein; (C) cleavages predicted in the C-terminal 175

aa of Presenilin-1, a protein whose mutated forms are involved in Alzheimer‘s disease (Checler et al.,

2000).

For the results, a short and a long output format can be selected. The short format is more

graphical and shows the cleavages inserted into the submitted sequence as red, vertical

bars (Figure 2.4-3 A, C). This format is recommended for a quick overview and serves as
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the default setting. The long format gives more detailed tabular information on

cleavage positions and estimated cleavage strength (Figure 2.4-3 B). It is useful, for

example, for testing effects of mutations on the cleavage pattern and cleavage strength.

(Please note that the assessment of cleavage strength is not based on quantified

cleavage data, but purely on the qualitative nature of the aa flanking the prospective

cleavage site.)

2.4.4.3 Prediction results – mutated peptides containing CTL epitopes

PAProC can rapidly assess the changes of proteasomal cleavage imposed by mutations

in an amino acid sequence containing CTL epitopes. In the case of a Moloney murine

leukemia virus (MuLV) epitope, it was reported that a mutation N→D (as in the related

Friend MuLV), but not N→S (as in the endogenous AKV-type MuLV), just C-terminal of

the CTL epitope abrogates the generation of the C-terminus of the epitope by inducing a

new cleavage site after D (Beekman et al., 2000). PAProC predicts these experimentally

verified cleavages correctly (Figure 2.4-4 A). In another case, the R→H point mutation at

position 273 of the tumor suppressor p53 was shown to abrogate the cleavage generating

the C-terminus of the HLA-A*0201-epitope 264-272 (Theobald et al., 1998). Again,

PAProC correctly predicts this change of the proteasomal cleavage pattern (Figure 2.4-4

B). It should be stressed that PAProC predicts the C-terminal cleavages in the viral and in

the p53-peptides to be very strong cleavages, i.e. the mutations in the peptides turn

strong cleavage sites into non-cleavage sites in PAProC.

In yet another example, the exchange of the N-terminal residue of a viral CTL epitope

rescues it from proteasomal destruction. Whereas the residue R promotes an epitope-

destroying cleavage in the FMR type MuLV sequence, the R→K exchange in the

AKV/MCF type of MuLV weakens this cleavage considerably, thus conserving the

AKV/MCF CTL epitope (Ossendorp et al., 1996). PAProC correctly predicts the epitope-

destroying cleavage behind R; however, PAProC does not predict a cleavage behind K

any more (Figure 2.4-4 C). The latter is in contrast to the experimental results, where a

very weak cleavage was found behind K. However, the result is in line with the

experimental finding that the R→K mutation rescues the CTL epitope.
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Figure 2.4-4: PAProC predictions of changes in the proteasomal cleavage pattern in
sequences containing CTL epitopes, imposed by aa mutations within the epitope or at the
flanking residue

(A) PAProC prediction of the C-terminal cleavage in related viral sequences (experimental results in

Beekman et al., 2000); (B) PAProC prediction of the C-terminal cleavage in a wt and mutant p53-

epitope (experimental results in Theobald et al., 1998); (C) PAProC prediction of an epitope-

destroying cleavage at the N-terminus of related viral sequences (experimental results in Ossendorp

et al., 1996). See text for details. Arrows indicate predicted cleavages. The mutated position is

indicated by large letters. The underlined sequence corresponds to the CTL epitope. Please note that

mouse 20S proteasomes were used to generate the experimental results for the CTL epitopes from

MuLV (A and C). The predictions were done using human proteasome option type III.

2.4.4.4 Prediction results – proteins linked to disease

For polyQ-diseases, altered proteasomal degradation of disease-linked proteins probably

contributes to their intraneural aggregation, a crucial step in the pathogenesis of these

diseases (Wanker, 2000). PAProC can serve to assess the general cleavability and the

proteasomal cleavage pattern in such proteins. For both huntingtin in Huntington’s

disease (HD) and ataxin in spinocerebellar ataxias (SCA), altered proteasomal

degradation has been indicated in development of disease (Evert et al., 2000; Wyttenbach

et al., 2000). We now report that two out of three PAProC-algorithms trained by human

20S proteasome cleavage data (types II and III) predict the polyQ-regions of wt human

ataxin-7 (10 aa) and of wt huntingtin (repeat length: 23 aa) to be resistant to proteasomal
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cleavage (not shown). As the algorithm behind PAProC only inspects a window of 10

aa, the same is true for mutated huntingtin and ataxin with longer polyQ-sequences. It is

conceivable that especially pathologically elongated polyQ-sequences could protect

polyQ-containing proteins from proteasomal degradation, thus leading to protein

accumulation within neurons and to cytosolic and nuclear inclusions. It must be mentioned

that it is not an intrinsic feature of our prediction algorithm to leave poly-aa-sequences

uncleaved: One-third of the 20 possible poly-aa-sequences (like AAAA..., CCCC...,

DDDD..., etc.) are still predicted to be cleaved by proteasomes (not shown).

2.4.4.5 Prediction results – combination of SYFPEITHI and PAProC

For immunologists, PAProC will be most interesting when used in combination with

predictors of MHC I binding. To assess whether PAProC-predictions correlate with known

CTL epitopes, we tested whether PAProC predicts cleavages at the C-termini of CTL

epitopes in the melanoma-associated proteins MAGE-1 and MAGE-3. For MAGE-1, the

C-terminal cleavage was predicted for 8 of 10 CTL epitopes (human proteasome type III,

not shown). In 6 of the 8 cases, cleavages at both the N- and C-terminus of the CTL

epitope were predicted. For MAGE-3, 4 of 7 C-termini were predicted to be cleaved

correctly. In 3 of the 4 cases, PAProC predicted cleavages at both the N- and C-terminus

of the epitope (data not shown). Known CTL epitopes in MAGE-1 include peptides binding

to different HLA-alleles, e.g. to A2 (Pascolo S, submitted), A3, A24, A28, B7, B37, B53,

Cw2 and two epitopes binding to both A1/B35 and Cw3/Cw16, respectively. Known CTL

epitopes in MAGE-3 include peptides binding to A1, A2, A24, B37 and B44 (for references

see Rammensee et al., 1999).

For the combination of MHC I ligand prediction and proteasomal cleavage prediction, one

would probably first predict MHC I binders from a protein sequence of interest. In the

second step, one would check the predicted MHC I binders for correct C- (and perhaps N-

) terminal processing by proteasomes. To mimic this approach, we a) asked SYFPEITHI

to predict MHC I-binding peptides from the tumor-associated proteins HER-2/neu,

pmel/gp100 and p53 and from the influenza HA protein, b) asked PAProC to predict the

cleavages in these proteins and c) compared the outcome to that of known CTL epitopes

from these proteins (Table 2.4-1).
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Table 2.4-1: PAProC predictions of the C-terminal cleavages of CTL epitopes

Protein MHC# PAProC / CTL epitopes

(proteasome type) §

PAProC / predicted

MHC-ligands$

HER-2/neu HLA-A*0201

(decamers)

2/2 (III)

1/2 (II, I)

12/38 (III§)

pmel/gp100 HLA-A*0201

(nonamers)

4/5 (I)

3/5 (II, III)

29/75 (I)

p53 HLA-A*0201

(nonamers)

2/2 (III) 12/25 (III)

Infl. Jap. HA H2-Kd

(nonamers)

2/3 (I/II) 6/20 (I), 7/20 (II)

# MHC class I molecule for which ligands were predicted; HLA: Human leukocyte antigen; H2:

mouse MHC I; in brackets: length of predicted MHC I ligands

§ PAProC predictions of the C-terminal cleavage for CTL epitopes (Number of correctly predicted C-

termini / number of CTL epitopes tested). Proteasome type: algorithms used for PAProC predictions.

Types I-III, all based on human 20S proteasome cleavage data, slightly differ in parts of their training

data (Refer to Kuttler et al. (2000) for detail; see 2.3).

$ PAProC predictions of the C-terminal cleavage for predicted MHC I ligands (Number of predicted

cleavage sites corresponding to the C-termini of predicted MHC I ligands / number of predicted MHC

I ligands tested). In brackets: proteasome type.

For HER-2/neu decamers, the C-termini of the two known HLA-A*0201-restricted CTL

epitopes were predicted to be cleaved correctly by PAProC’s human proteasome type III

(one of two for types I + II). However, PAProC’s overall hit rate was only 12 of 38 for the

C-termini of predicted MHC I ligands from HER-2/neu, including the two correctly

predicted CTL epitopes (see Material & Methods for details). This discrepancy reflects the

influence of antigen processing on actual MHC I ligand generation. Similarly, for the three

other proteins tested, fitting PAProC predictions were “enriched” among the CTL epitopes

as compared to predicted MHC I ligands (Table 2.4–1). These results suggest that

PAProC can indeed be used in combination with the prediction of MHC I binding to narrow

down the search for CTL epitopes from any protein sequence.

2.4.5 Discussion

Here we have described the first publicly available prediction tool for proteasomal
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cleavages, PAProC (Prediction Algorithm for Proteasomal Cleavages). This internet-

based program (http://www.paproc.de) allows the rapid submission of aa sequences and

provides an output of possible proteasomal cleavages sites within these sequences

(Figure 2.4-2, Figure 2.4-3). PAProC offers information on both the general cleavability of

amino acid sequences (cuts per amino acids) and the individual cleavages (positions and

estimated strength) (Figure 2.4-3). Our results suggest that PAProC can be used to

assess the influence of aa mutations on CTL epitope generation (Figure 2.4-4). More

importantly, PAProC will support the search for CTL epitopes by making it more efficient.

The number of candidates (i.e. predicted MHC I ligands) will be reduced by excluding

those not predicted  to be cleaved correctly (Table 2.4–1).

2.4.5.1 Benefits of PAProC

Proteasomes are involved in many essential cellular processes, such as cell cycle control

and transcription factor activation (Rock and Goldberg, 1999; Pamer and Cresswell,

1998). They have also been linked to disease, e.g. Alzheimer’s, Parkinson’s and

Huntington’s disease (Checler et al., 2000; Wanker, 2000). Thus, PAProC might be

attractive for researchers in a wide range of fields. However, as proteasomal cleavage

specificity can regulate immune responses (see 2.4.2 Introduction), immunologists

studying antigen processing will most likely constitute the largest group of future PAProC-

users. Rational vaccine-design in particular could profit from proteasomal cleavage

prediction. For multi-epitope vaccines, PAProC could for example be used to determine

epitope-linking regions that most efficiently support correct processing of the amino acid

sequence. Moreover, proteasomal cleavage predictors such as PAProC could be used for

the design of peptide-based proteasome inhibitors.

2.4.5.2 Prediction success rate of PAProC

There are examples in which PAProC does not predict proteasomal cleavages at the C-

termini of known CTL epitopes (hit rate in HER-2/neu HLA-A*0201-restricted nonamers: 3

of 7 CTL-epitopes, 15 of 40 predicted MHC I ligands; pmel17/gp100 HLA-A*0201-

restricted decamers: 1 of 6 CTL-epitopes; EBV EBNA-6 HLA-B*2705-restricted nonamers:

1 of 2; EBV EBNA-3 HLA-B*08-restricted nonamers: 0 of 4 CTL-epitopes; not shown).

Although C-terminal trimming cannot be excluded to play a role in vivo (Elliott et al., 1995),

it is more likely that the limited amount of training data for the PAProC algorithm is

responsible for this (Kuttler et al., 2000).

PAProC also predicts epitope-destroying cleavages within known CTL epitopes (not
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shown). We do not consider this a problem because there are many examples of

proteasomal cleavage sites within CTL epitopes that do not abrogate presentation of the

epitope in vivo (Ossendorp et al., 1996; Theobald et al., 1998; Morel et al., 2000;

Lucchiari-Hartz et al., 2000, to name a few). Moreover, epitope-destroying cleavages

might be weak ones, whereas cleavages at the C-termini of CTL epitopes might be

dominant ones. Our preliminary prediction data suggest this notion (Kuttler, unpublished

observation). However, only predictions based on quantified cleavage data will solve this

problem adequately. The assessment of cleavage strength from non-quantified data, as

executed in PAProC at present, is only a rough estimate.

The PAProC algorithms trained with human 20S proteasome data correctly predict

cleavages that were generated experimentally or in vivo by mouse proteasomes (Figure

2.4-4, Table 2.4–1). This result suggests that PAProC’s human proteasome algorithms

can be used to predict cleavages generated by any other mammalian proteasome. This

concept is supported by the finding that the cleavage preferences of mammalian

proteasomes are similar (Bjorkman et al., 1987). The successful prediction results for CTL

epitopes binding to different human HLA- (text and Table 2.4–1) and the mouse H2-Kd

MHC I molecules (Table 2.4–1) confirm that the success rate of PAProC predictions does

not depend on factors imposed by distinct MHC I binding motifs.

2.4.5.3 Future developments

PAProC was developed by antigen processing and proteasome specialists in close

collaboration with biomathematicians, and has thus profited from competent biological and

mathematical expertise. However, we are aware of the fact that PAProC is still in its

"childhood years". The precision of PAProC predictions varies depending on the substrate

and, for human proteasome, on the proteasome type chosen. The lack of training data is

probably responsible for this (Kuttler et al., 2000). For this reason, we are continuously

working on improving PAProC both by the generation of additional training data and by

the fine tuning of the prediction model itself. For example, in the future we will use

quantified cleavage data for greater accuracy. We will use cleavages by 26S proteasomes

(Emmerich et al., 2000) and cleavages by immuno- or constitutive human 20S

proteasomes (Toes et al., in preparation; see 2.5 for details) as training data. The latter

approach in particular will be of great interest for immunologists. Moreover, we are

developing an algorithm based on fragments, not cleavage sites, hence allowing the

prediction of fragments, not just cleavage sites. This approach will give more insight into

whether cleavages within MHC-ligands will still allow the generation of the uncut ligand.
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However, PAProC will profit most efficiently from working experience, which is one of

the main reasons for making it public at this point. We therefore encourage PAProC users

to let us know how the program performed for them. We will be happy to include

experimental data generated outside our lab into our training data. However, strict quality

measures will be applied.

2.4.5.4 Distant goal

For immunologists, proteasomal cleavage prediction will be most useful in combination

with the prediction of MHC I ligands. Several groups are preparing such combined

approaches. A group in Berlin is combining the previously reported proteasomal cleavage

algorithm (Holzhütter et al., 1999) and PAProC to available predictors of MHC I binding,

such as SYFPEITHI (H. Mollenkopf, personal communications). In Copenhagen,

NetChop, a  neural network for proteasomal cleavage prediction (C. Kesmir, submitted),

and PAProC will be combined to different available MHC I ligand predictors (C. Kesmir

and S. Brunak, personal communications). A group in Leiden is preparing an approach by

which  proteasomal cleavage data will be combined with characteristics of known CTL
epitopes (F. Ossendorp, C. Melief, personal communications).
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2.4.7 Abbreviations
CTL cytotoxic T lymphocytes

EBNA Ebstein-Barr virus nuclear antigen

EBV Epstein-Barr virus

ER endoplasmic reticulum

GARR Gly-Ala-rich region

H2 mouse MHC locus

HD Huntington's disease

HLA human leukocyte antigen (human MHC locus)

MHC I major histocompatibility complex class I

MuLV Moloney murine leukemia virus

PAProC Prediction Algorithm for Proteasomal Cleavages

polyQ poly-glutamine

SCA spinocerebellar ataxia

TAP transporter associated with antigen processing

wt wild-type
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2.5 Discrete cleavage motifs of constitutive and immuno-
proteasomes revealed by quantitative analysis of cleavage
products

2.5.1 Summary

Proteasomes are the main proteases responsible for cytosolic protein degradation and the

production of MHC class I-ligands. Incorporation of the IFN-γ-inducible subunits LMP2,

LMP7 and MECL-1 leads to the formation of immuno-proteasomes which have been

associated with more efficient MHC class I antigen processing. Although differences in

cleavage specificities of constitutive- and immuno-proteasomes have been observed

frequently, cleavage motifs have not been described.

Using the 436-amino acid protein enolase-1 as unmodified model substrate and a novel

quantitative approach, we analyzed a large collection of peptides generated by either set

of proteasomes. Inspection of the amino acids flanking proteasomal cleavage sites

allowed the description of two different cleavage motifs. These motifs finally explain recent

findings describing differential processing of CTL-epitopes by constitutive- and immuno-

proteasomes and are important to the understanding of peripheral T cell

tolerization/activation as well as for effective vaccine development.

2.5.2 Introduction

Cytotoxic T lymphocytes (CTL) are crucial for the defense against many invading

organisms and certain tumors. Presentation of antigenic peptides bound to major

histocompatibility complex (MHC) class I molecules is a prerequisite for stimulation of a

CTL-response, and therefore plays a pivotal role in providing CTL with the capacity to

respond to foreign antigens (Rammensee et al., 1993).

Peptides that meet the restrictive binding characteristics of MHC class I molecules for

presentation to CTL are generated after intracellular protein degradation by cytosolic

proteases. The central enzyme responsible for protein degradation is the proteasome

(Rock and Goldberg, 1999). Because of their intimate involvement in antigen processing

and presentation (Pamer and Cresswell, 1998), detailed knowledge on the cleavage

preferences of proteasomes will be crucial for understanding CTL-epitope generation and

thus for the regulation of specific immune responses.
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The 20S proteasome represents the proteolytic core of the larger 26S proteasome

complex that encompasses either one or two regulatory particles of at least 18 subunits

(Coux et al., 1996). The eukaryotic 20S particle is composed of 14 different but related

subunits organized in a barrel-shaped complex with the stoichiometry α7β7β7α7. Three

subunits of the two inner β-rings (β1, β2 and β5) participate directly in peptide bond

cleavage. They represent three distinct proteolytic activities, designated as the

chymotrypsin (ChT)-like, trypsin-like and peptidylglutamylpeptide-hydrolyzing (PGPH)

activities (Heinemeyer et al., 1997; Dick et al., 1998). As the NH2-terminal threonine

residues responsible for peptide bond cleavage do not directly prefer certain peptide

bonds over others, the basis for the three distinct proteolytic activities most likely resides

in the characteristics of the amino acids in the vicinity (pockets) of each active NH2-

terminal threonine (Groll et al., 1997).

Upon interferon-γ (IFN-γ) exposure of cells, the three active β-subunits that are

constitutively expressed in 20S-proteasomes can be replaced by three IFN-γ-inducible

homologues, LMP-2 (=β1i) (for Y  (β1)), MECL-1 (β2i) (for Z (β2)) and LMP-7 (β5i) (for X

(β5)).  Although there is extensive sequence homology, these replacements alter the

nature of peptides that are generated by proteasomes (Boes et al., 1994; Groettrup et al.,

1995; Gaczynska et al., 1993; Eleuteri et al., 1997; Cardozo and Kohanski, 1998).

Proteasomes harboring these IFN-γ-inducible subunits are also called immuno-

proteasomes, as opposed to the constitutively expressed "constitutive" proteasomes,

because immuno-proteasomes were found to process a number of viral epitopes with

greater efficacy in vitro (Sijts et al., 2000a; Sijts et al., 2000b; van Hall et al., 2000;

Schwarz et al., 2000). Using several artificial fluorogenic substrates in vitro, it was found

that immuno-proteasomes display a better capacity to cleave after hydrophobic and basic

residues, but are less well equipped for cleavage after acidic amino acids (Gaczynska et

al., 1994). The finding that proteasomes are responsible for the generation of the correct

COOH-terminus of several CTL-epitopes (Craiu et al., 1997; Stoltze et al., 1998), and the

notion that hydrophobic or positively charged amino acids serve in most cases as COOH-

terminal anchor-residues of MHC class I-ligands, led to the concept that immuno-

proteasomes contribute to more efficient MHC class I antigen-processing. Nonetheless,

more recent studies have shown that some antigenic peptides are efficiently produced by

constitutive proteasomes but cannot be produced by immuno-proteasomes (Morel et al.,

2000). This clearly contradicts the concept that the immuno-proteasome is generally
better suited for the processing of MHC class I-ligands.
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To better understand the reasons why certain MHC class I-ligands are destroyed and

others generated with greater efficiency in cells expressing different sets of proteasomes,

we have performed an in-depth analysis of peptide fragments generated after
proteasomal cleavage.

We have employed, for the first time, a strictly quantitative method to analyse a large

collection of peptide-fragments produced by either set of proteasome. Our observations

allowed the identification of certain amino acids (or their characteristics) in positions

distant, or directly flanking the cleavage sites selected by either set of proteasomes. The

(quantified) mapping of cleavage sites using a large protein substrate provides the basis

for a better understanding of proteasomal cleavage specificity, allowing a refined

proteasomal cleavage prediction, which will be helpful for the identification of new CTL

epitopes, the design of new (recombinant) vaccines, and for better insight into immunity

against infection.

2.5.3 Materials & Methods

2.5.3.1 Purification of 20S proteasomes

20S proteasomes were isolated as described before (Groettrup et al., 1995). Frozen

pellets of LCL-721 cells or LCL-721.174 cells were lysed in a buffer containing 0.1%

Triton-X-100 on ice and homogenized in a Dounce homogenizer. The 40.000xg

supernatant of the lysate was bound to DEAE-Sephacel. After elution, the protein fraction

was concentrated and loaded onto a 10 - 40% sucrose gradient. After centrifugation,

gradient fractions were tested for protease activity using the fluorogenic substrates Suc-

LLVY-AMC and Suc-YVAD-AMC. Active fractions were pooled and further purified by

anion exchange chromatography on a MonoQ HR5/5 FPLC column (Pharmacia). The

purity of the proteasome preparates, checked by SDS-PAGE, was >95%. Quantification of

native proteasome protein was determined by a variation of the Lowry Method (Bio-Rad

Protein Assay, Bio-Rad) and bovine serum albumine as a standard.

2.5.3.2 Immunoblotting

5 µg of purified proteasome polypeptides were separated by 12% SDS-PAGE, and

transferred to polyvinyldifluoride (PVDF) (DuPont) with a semidry transfer system. Human

LMP-7 was detected using a rabbit polyclonal antiserum by chemoimmunoluminescence

(PW8200, Affiniti research Products Ltd. Mamhead, UK).
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2.5.3.3 Measurement of proteasomal activities against substrates with fluorogenic

leaving group

The flourogenic substrates benzyloxycarbonyl-Leu-Leu-Glu- β-naphtylamide (Z-LLE- β-

NA), succinyl-Tyr-Val-Ala-Asp-7-amino-4-methylcoumarin (Suc-YVAD-AMC), succinyl-

Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin (Suc-LLVY-AMC), and benzyloxycarbonyl-

Ala-Arg-Arg-7-amino-4-methylcoumarin (Z-ARR-AMC) (all from Bachem, Heidelberg,

Germany) were prepared from 10 mM stocks in Me2SO. 1 µg proteasome was incubated

with 100 µM substrate solution. Fluorescence of the leaving group was determined after

incubation for 0 - 6 hours with a Tecan spectrophotometer (Tecan, Crailsheim, Germany)

at 360 nm excitation and 450 nm emission for AMC and at 330 nm excitation and 410 nm

emission for β-NA. Fluorescence readings of released AMC or β-NA were recorded as

arbitrary units.

2.5.3.4 In vitro degradation of enolase 1

150 µg of yeast enolase 1 was incubated in digestion buffer (20mM Hepes/KOH (pH 7.6),

2 mM MgAc2, and 0.01% SDS) with proteasomes in a molar ratio of 150:1. Digestions

were stopped by freezing the samples at -80°C when approximately 50% of the substrate

was digested (usually after approximately 48 hours).

2.5.3.5 Separation and analysis of cleavage products

For the separation of degradation products, unfractionated enolase digests were

subjected to µRP SC 2.1/10 columns (Pharmacia) on a Microbore HPLC-system (SMART

system, Pharmacia). Buffer A contained 0.1% trifluoroacetic acid (TFA); buffer B

contained 0.081% TFA and 80% acetonitrile. Gradients were 0% for 5min, in 40 min to

40% B, in 8 min to 75% B, and up to 85% in another 7 min at a flow rate of 150 µl/min.
Fractions were collected by peak fractionation with a maximal volume of 500 µl/peak.

Peak fractions were dried and redissolved in 25µl of 40% methanol, 1% formic acid and

subsequently analysed by Matrix-associated Laser desorption ionization-time of flight

(MALDI-TOF) mass spectrometry (G2025A, Hewlett Packard, Waldbronn, Germany) and

N-terminal sequencing (Edman degradation) (pulsed liquid protein sequencer procise

494A, Applied Biosystems, Weiterstadt, Germany). Alternatively, peptides were analysed

on a hybrid quadrupole orthogonal acceleration tandem mass spectrometer (Micromass).

All these techniques were applied as described recently (Nussbaum et al., 1998). Pmol

amounts for each peptide detected in the HPLC fraction were determined by Edman
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sequencing and used for the quantitative analysis of the data.

2.5.3.6 Statistical analysis - frequencies of amino acids

To detect statistically significant features in the amino acid distributions flanking the

cleavage sites, we compared percent values using a classical Chi2-test for four tables

(variance assumed due to counting). This method was used to compare constitutive and

immuno-proteasomes with each other and with enolase. For a more thorough comparison

of the absolute pmol-amounts of constitutive and immuno-proteasomes, we accounted for

the experimental variability and, according to the quasi-likelihood approach of

Wedderburn, assumed a mean-variance structure. We assumed the variance to be

proportional to the mean and fitted the proportionality constant α from all the data. Then,

the usual Chi2-test variable was scaled by 1/α, which led asymptotically to a test variable

that is Chi2 distributed with one degree of freedom. – The results of the latter, more

thorough approach correlated to the approach neglecting experimental variability and

using percent values. Only Chi2-values above 3.841 are considered to be significant.

2.5.3.7 Statistical analysis - comparison of amino acid characteristics

To compare the characteristics of amino acids, The observed frequencies of amino acids

at P6 to P6' around cleavage sites in both proteasomes were compared to each other

using the Chi2-test. Hydrophobicity, bulkiness, and flexibility characteristics (values as in

24) of both proteasomes, and enolase were compared by translating the percentage

amino acids found to the corresponding  hydrophobicity, bulkiness, and flexibility scales.

This resulted in spectra per cleavage site, and these were compared by means of
regression analysis.

2.5.4 Results

2.5.4.1 Isolation of proteasomes

Proteasomes were isolated from EBV-transformed B cells. Constitutive proteasomes were

purified from cells (LCL721.174) lacking LMP2 and LMP7 due to a chromosomal deletion

in the MHC-locus (Spies et al., 1990; DeMars et al., 1985). The lack of LMP2 or LMP7

results in inefficient maturation of MECL-1 in 20S proteasomes. Therefore, this cell line

contains only proteasomes carrying active constitutive subunits (Griffin et al., 1998). The

immuno-proteasome preparation was isolated from the parental line (LCL721) that served
for the generation of LCL 721.174.
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Figure 2.5-1: Immuno-subunit-incorporation into 20S proteasomes purified from LCL-721 cells
(left), but not into 20S-proteasomes derived from LCL-721.174 cells (right).

20S proteasomes were isolated from LCL-721 and LCL-721.174 cells as described in materials and

methods. Proteasome subunits were separated by SDS-PAGE (a) and probed with an LMP-7-

specific antiserum (b). LMP-7 was only detected in 721-proteasomes.

As expected, only proteasomes isolated from LCL721 cells expressed immuno-subunits,

as examplified by the presence of LMP7 (Figure 2.5-1a,b). Moreover, these proteasomes

showed an increased cleavage activity after the hydrophobic amino acid tyrosine and a

reduced ability to release fluorogenic groups linked to acidic amino acids, compared to

proteasomes isolated from LCL721.174 cells (Figure 2.5-2). Both proteasome

preparations harboured the constitutive subunit Z (not shown). This indicates that not all

constitutive subunits were exchanged in the proteasome pool of the LCL721 cells, which

most likely gives a good reflection of the intracellular proteasome pool present in IFN-γ

treated cells.

Together, these data indicate that proteasomes purified from LCL721, although containing

some constitutive proteasomes, behave like immuno-proteasomes with very little PGPH-

activity, whereas LCL721.174-derived proteasomes can be classified as constitutive

proteasomes with high PGPH-activity.
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Figure 2.5-2: Comparison of the ability of 20S proteasomes isolated from LCL-721 and LCL-
721.174 cells to catalyze the release of fluorogenic groups from three different substrates.

Peptidylglutamylpeptide-hydrolyzing activity was analyzed using Z-LLE-βNA and Suc-YVAD-AMC as

substrates. The substrates Suc-LLVY-AMC and Z-ARR-AMC were used to analyze chymotrypsin-like

and trypsin-like activities, respectively. One representative experiment of three is shown.

2.5.4.2 Digestion of Enolase

Although the ability of constitutive- and immuno-proteasomes to cleave a set of standard

fluorogenic substrates or some CTL-epitope containing peptides has been well

documented, little is known about the selection of cleavage sites during the degradation of

proteins, especially on a quantitative basis. To obtain further insight into these cleavage

preferences, we used the complete protein enolase-1 from yeast as substrate, which can

be digested by proteasomes in vitro without prior modifications. Enolase is a 436 amino

acid long protein in which the frequency of amino acids resembles the average amino acid

frequency in proteins (Brendel et al., 1992). Digestion of enolase was performed by

incubation with constitutive- or immuno-proteasomes at a molar ratio of 150 : 1 (enolase :

proteasome). The reaction was stopped when approximately 50% of the substrate was

degraded, and subsequently separated by reversed phase HPLC (Figure 2.5-3a,b).

Comparison of two independent digests obtained after incubation with two independent

constitutive proteasome batches, revealed that highly comparable degradation profiles

were obtained (Figure 2.5-3c). These data indicate that different incubations by the same

proteasome type yields a similar set of degradation products, as was confirmed by

MALDI-MS analyses of several fractions that eluted at the same time (not shown).
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Figure 2.5-3: Enolase degradation by proteasomes purified from LCL-721 and LCL-721.174
cells.

Enolase was incubated with constitutive proteasomes (a), immuno-proteasomes (b) or was left

untreated (dotted lines). A magnification of the degradation-profile is shown in the inserts. The

comparison of two independent digestion-profiles (in c) acquired after incubating enolase with two

different constitutive proteasome-batches purified from LCL-721.174 cells shows high reproducibility,

indicating that a similar set of peptides is generated by different "174-proteasome"-batches. Optical

density at 214 nm of eluted digestion products from reversed phase HPLC is shown.

After having established the reproducibility of the digestion profiles, the peptide fragments

in all fractions were analysed by Edman sequencing, in combination with MALDI-MS, and



143

compiled in a digestion map (Figure 2.5-4). Approximately 50% of cleavages

generated by constitutive proteasomes were not produced by immuno-proteasomes.

Indeed, when the identity of fragments produced by either set of proteasome was

compared on a qualitative basis, only around 25% of peptides produced by immuno-

proteasomes were also found in constitutive proteasome digests.

Therefore, the pool of peptides generated by cells expressing immuno-proteasomes is

very different from the peptide-pool generated by cells harbouring constitutive

proteasomes only.

2.5.4.3 Quantification of digestion profiles

For careful examination of proteasomal cleavage preferences, it is important to know the

quantity of each fragment to calculate how often particular cleavage sites are selected. In

contrast to MS-data, data acquired by Edman-sequencing are quantitative, and can thus

be used to determine the amount of peptide liberated. The combination of MS-analysis

and the quantified Edman-sequencing data identified the absolute amount of each peptide

detected in HPLC-fractions. In the constitutive proteasome digests, a total of 136

fragments was detected, representing 6135 pmol of peptide (Table 2.5-1). By adding the

pmol of all fragments starting or ending at a particular cleavage site (and then choosing

the higher one of the two sums), pmol amounts of peptide generated from a given

cleavage site, and thus the frequency of cleavage site utilization was determined. The

most frequently used cleavage sites were found at amino acid position 278 and 404,

resulting in the liberation of 265 pmol peptide each (Table 2.5-1 top). As usage of many

other cleavage sites resulted in only 5 pmol of peptide, these data indicate that the relative

usage of cleavage sites within one protein can differ substantially.

Similar data were obtained for the immuno-proteasome digest (123 peptides representing

6370 pmol of peptide) (Table 2.5-2). The most abundant cleavage site was found at amino

acid position 419, resulting in the generation of 250 pmol peptide (Table 2.5-2 top). As for

constitutive proteasomes, many other cleavage sites were used less often, indicating that

both proteasome species prefer certain peptide bonds over others as cleavage sites. The

almost identical amounts of peptides generated by both proteasomes (6135pmol versus

6370 pmol) demonstrate a comparable substrate turnover, allowing a direct comparison of

pmol amounts of amino acids at different positions around cleavage sites as well as a

comparative statistical analysis of both digests.
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Figure 2.5-4: Digestion map generated from degradation of enolase by constitutive
proteasomes (A) and immuno-proteasomes (B).

Vertical lines: cleavage sites determined by Edman degradation and/or MS; solid bars: degradation

products identified by Edman degradation in combination with MS; open  bars: degradation products

identified by Edman degradation only (COOH- terminus of peptide not identified).
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Table 2.5-1: Absolute amounts of amino acids found in positions P6 to P1 and P1’ to P6'
of peptides generated by constitutive proteasomes.

Position pmol P6-P1 ���� P1'-P6'

278 265 LTGPQL ADLYHS

404 265 APARSE RLAKLN

383 185 TEDTFI ADLVVG

31 175 EKGVFR SIVPSG

142 165 SKSKTS PYVLPV

183 165 TFAEAL RIGSEV

230 165 LDLIVD AIKAAG

330 155 TNPKRI ATAIEK

146 150 TSPYVL PVPFLN

79 145 PAFVKA NIDVKD

P6 P5 P4 P3 P2 P1 ���� P1' P2' P3' P4' P5' P6'

A 865 595 1020 485 620 825 1545 330 710 590 930 365
C 0 0 0 0 130 0 0 0 0 0 0 0
D 580 460 255 215 185 805 300 1185 315 235 170 400
E 530 465 385 455 250 605 300 275 460 150 465 440
F 50 275 430 165 430 145 190 250 165 575 220 50
G 300 575 750 230 545 175 185 415 760 185 320 780
H 175 125 10 150 280 65 165 110 65 35 385 90
I 505 125 385 335 180 510 60 845 220 450 405 170
K 220 580 240 945 455 80 365 115 370 675 600 655
L 540 550 535 525 230 1185 345 900 1120 435 670 565
M 10 0 95 10 15 35 70 40 75 65 10 60
N 120 285 235 140 240 95 390 215 195 160 270 730
P 365 475 550 365 95 40 480 20 255 240 330 315
Q 45 260 25 20 340 60 75 60 155 305 35 75
R 125 45 45 425 290 275 595 95 155 145 80 60
S 575 365 380 90 535 395 500 215 170 530 490 555
T 735 460 140 365 365 140 150 430 140 360 250 105
V 270 380 365 920 840 450 275 410 695 705 355 695
W 40 15 35 30 20 30 0 50 0 0 50 10
Y 85 100 255 265 90 220 145 175 110 295 100 15

sum 6135 6135 6135 6135 6135 6135 6135 6135 6135 6135 6135 6135

(Top) 10 most abundant cleavage sites from P6-P1 and P1'-P6', the position of the cleavage site

(pos) and the calculated amount of enolase that has been cleaved at this position (pmol) (see also

Materials and Methods).

(Bottom) Based upon quantified data (as exemplified in Top), the absolute amounts of amino acids

(in pmol) around all identified cleavage sites are shown.
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Table 2.5-2: Absolute amounts of amino acids found in positions P6 to P1 and P1’ to P6'
of peptides generated by immuno-proteasomes.

Position pmol P6-P1 ���� P1'-P6'

419 250 RIEEEL GDNAVF

390 200 DLVVGL RTGQIK

183 155 TFAEAL RIGSEV

313 155 HFFKTA GIQIVA

133 150 PLYKHL ADLSKS

142 150 SKSKTS PYVLPV

253 150 ASSEFF KDGKYD

285 150 DLYHSL MKRYPI

289 150 SLMKRY PIVSIE

383 150 TEDTFI ADLVVG

P6 P5 P4 P3 P2 P1 ���� P1' P2' P3' P4' P5' P6'

A 680 615 940 420 590 745 1440 665 560 775 480 810
C 0 0 0 0 0 0 0 0 0 0 0 0
D 725 360 190 225 160 150 335 1210 255 325 220 375
E 300 370 515 870 580 155 255 320 410 270 400 515
F 0 495 280 105 665 550 50 100 120 260 190 250
G 500 550 485 180 360 170 880 475 970 265 465 675
H 300 35 80 285 205 130 140 40 50 40 340 285
I 440 345 290 470 145 585 20 800 295 420 730 395
K 90 475 400 1065 620 175 450 275 290 405 590 830
L 560 975 450 235 160 2305 65 370 1025 410 105 510
M 20 0 215 10 80 50 295 0 0 100 0 50
N 245 285 290 165 205 95 520 290 560 575 190 290
P 325 370 255 380 35 0 375 175 305 180 440 80
Q 10 260 210 105 170 10 175 75 225 250 100 20
R 365 100 65 215 395 200 480 0 190 290 320 100
S 545 250 610 225 735 185 345 320 265 695 380 520
T 890 200 85 235 570 195 310 560 275 195 275 55
V 255 485 585 940 695 320 85 535 495 555 925 610
W 25 60 0 25 0 70 0 0 0 75 0 0
Y 95 140 425 215 0 280 150 160 80 285 220 0

sum 6370 6370 6370 6370 6370 6370 6370 6370 6370 6370 6370 6370

(Top) 10 most abundant cleavage sites from P6-P1 and P1'-P6', the position of the cleavage site

(pos) and the calculated amount of enolase that has been cleaved at this position (pmol) (see also

Materials and Methods).

(Bottom) Based upon quantified data (as exemplified in Top), the absolute amounts of amino acids

(in pmol) around all identified cleavage sites are shown.
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Comparison -on a qualitative and quantitative basis- of the fragment length

distributions revealed that both proteasome species generated peptides in the size range

from 4-24 (c20S) and 3-26 (i20S) amino acids with an average length of  7 - 9 amino acids

(Figure 2.5-5).  As observed after qualitative analysis, quantitative comparison of the data

sets showed that only 30% of the peptides produced by constitutive fragments were also

produced by immuno-proteasomes (data not shown). Together, these findings strongly

indicate that in cells harbouring constitutive- or immuno-proteasomes, respectively, the

pool of peptides generated from proteasomal protein turnover will differ substantially.

Figure 2.5-5: Distribution of fragment lengths generated by constitutive proteasomes and
immuno-proteasomes.

The frequencies (a and c) and absolute amounts (b and d) of different fragments with the same size

obtained from enolase after digestion with constitutive proteasomes (c and d) and immuno-

proteasomes (a and b) is depicted.

2.5.4.4 Analysis of cleavage site-usage

As outlined above, some cleavage sites are used often, whereas others are used less

frequently or not at all by one or both proteasome species. Until now, most studies
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addressing the specificity of proteasomal peptide/protein degradation did not take the

frequency of cleavages into account. To study more accurately the influence of all 20

amino acids flanking proteasomal cleavage sites, we determined the frequencies of amino

acids around cleavage sites (P6 to P1 NH2-terminal of cleavage site; P1' to P6' COOH-

terminal of cleavage site) using the quantified data set described above (Table 2.5-1,

Table 2.5-2 and Figure 2.5-6). No statistically significant differences in cleavage site

selection were observed between the quantified cleavage data of two independent digests

performed by two independent immuno-proteasome batches, indicating that their

cleavage preferences were highly reproducible (not shown).

Figure 2.5-6: Relative frequencies of amino acids in position P1 (a) P1' (b).

The absolute amount of amino acids found in a defined positions (P6 to P6') around cleavage sites

used by constituve proteasomes and immuoproteasomes was divided by the total amount of

peptides detected in the digests resulting in the relative frequency of amino acid-usage in that

position. Big white bars: relative frequency of amino acids found in enolase; black bars: relative

frequency of amino acids at P1 or P1' positions in peptide-fragments generated by constitutive

proteasomes; grey bars: relative frequency of amino acids at P1 or P1' in peptide-fragments

generated by immuno-proteasomes.

Examination of cleavages performed by immuno-proteasomes revealed several deviations
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from randomness at the amino acid level (i.e. the background in enolase) as

determined by Chi2 analysis (not shown). L as P1 residue has the highest preference

(Chi2: 21) and reflects a pronounced ChT-like activity within immuno-proteasomes.

Weaker preferences for T at P6 (Chi2: 5.2) and D at P2' (Chi2: 6.2) are also evident. On

the other side, several residues appear to exert a negative influence on cleavage site

selection, with the hydrophobic residues I, L and V (Chi2: >4.3) at P1' being the most

prominent. Apart from these amino acids at the P1' position, L at P2 and P5', as well as K

at P6 (all Chi2: 4) were found less abundantly as expected. When amino acids are

grouped according to their characteristics, it was found that there was a positive

correlation between cleavage and the presence of hydrophobic, and bulky amino acids in

P1 (p < 0.0002).

An analogous examination for the cleavages selected by constitutive proteasomes

revealed that the frequency of S as P3- and the positively charged amino acid K as P1-

and P2'-residue is reduced (all Chi2: 3.9), indicating that these amino acids are disfavored

by constitutive proteasomes at these positions. Constitutive proteasomes, like immuno-

proteasomes, prefer A at P1' and L as P1 residue (albeit to a lesser extent; Chi2: 4.2).

Similarly, an enrichment for D at P2' was noted (Chi2: 8.5), indicating that both

proteasome species have a preference for negatively charged amino acids at the P2'

position. When comparing characteristics of amino acids at these positions, a preference

for hydrophobic, bulky amino acids in P1 (p < 0.0002) was observed. There is a negative

correlation between cleavage site selection and the presence of hydrophobic, bulky amino

acids in P1' (p < 0.0002).

2.5.4.5 Effect of immuno-subunit incorporation on cleavage site selection.

The data described above reveal that both proteasome species exhibit a different, but

partially overlapping (L in P1, A in P1' and D in P2') cleavage preference. However, they

do not address directly the influence of immuno-subunit incorporation on cleavage site

selection. Therefore, we compared absolute and relative amino acid frequencies around

cleavage sites used by immuno-proteasomes to those used by constitutive proteasomes.

As control, we evaluated cleavage site selection of two independent immuno-proteasome

batches, yielding no statistically significant differences (not shown). When comparing the

two proteasome species for individual amino acid usage, a strong enrichment of L (Chi2:

7.1 and to a lesser extent F, Chi2: 3.8) was detected at P1 in peptides generated by

immuno-proteasomes. The strong enrichment of L became most prominent when we

analysed in detail those cleavages exclusively generated by immuno-proteasomes, as
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43% of these cleavages were performed after L (data not shown). Acidic amino acids

D and E in P1 exert a negative influence on cleavage site selection by immuno-

proteasomes (Chi2: 4.5 and 8.1 respectively). G in P1' is enriched in peptides generated

by immuno-proteasomes (Chi2: 7.8), pointing to a preference of immuno-proteasomes for

this small nonpolar amino acid in P1'. Analysis of amino acid frequencies at positions P2

to P6 and P2' to P6' showed a preference of immuno-proteasomes for V at P5 (Chi2: 4.2),

whereas L at P5' and P2' is disfavored by immuno-proteasomes (Chi2: 7.3 and 4.3

respectively). When testing for amino acid characteristics, we found that immuno-

proteasomes prefer bulky, hydrophobic amino acids at P1 (P < 0.003), but dislike flexible

amino acids at this position (p<0.001). Similarly, immuno-proteasomes prefer hydrophobic

amino acids in P5 (p<0.03), but disfavor flexible amino acids in this location (p<0.04). The

opposite was found in P1': hydrophobic, bulky amino acids were favored more by

constitutive proteasomes (p<0.04). Thus, comparison of peptide bonds used as cleavage

sites by immuno-proteasomes to the ones used by constitutive proteasomes revealed a

pronounced ChT-like activity of immuno-proteasomes, as is reflected by a strong

enrichment of hydrophobic amino acids in P1. The results mentioned above are

summarized in Table 2.5-3.

2.5.5 Discussion

The proteasome is the key enzyme responsible for cytosolic protein degradation and the

generation of peptides that are presented by MHC class I molecules by liberation of the

appropriate COOH- or NH2- and COOH-terminus. However, proteasomes also can

prevent MHC class I presentation by destruction of potential MHC-ligands or their inability

to select the proper C-terminal cleavage site. Cleavage site selection might change

substantially after incorporation of IFN-γ-inducible subunits, as indicated by experiments

using small fluorogenic substrates or short synthetic peptides. Therefore, detailed

knowledge on the specificity of protein degradation by either constitutive or immuno-
proteasomes is vital to the comprehension and prediction of CTL-epitope generation.

To analyse alterations of cleavage preference upon immuno-subunit incorporation, we

used an entire protein as substrate without modification of amino acids or bias to known

CTL epitopes. The quantitative identification of more than 120 peptide fragments

generated by either constitutive- or immuno-proteasomes allowed a detailed analysis of

the cleavage specificities. Our data reveal that especially the amino acids in P3 to P3'

have a strong influence on cleavage site selection as the observed frequencies of amino

acids in these locations showed the largest discrepancy with their background frequencies
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in enolase. Nonetheless, amino acids further away most likely influence cleavage site

selection as well, as was reported earlier for the effect of P at P4 on peptide bond

cleavage by yeast and constitutive proteasomes (Nussbaum et al., 1998; Shimbara et al.,

1998; Kuttler et al., 2000; Miconnet et al., 2000). The average length of fragments

produced by either set of proteasome is almost the same. The slight increase in the length

of fragments generated by immuno-proteasomes can be explained by the lack of

cleavages after acidic amino acids. As a consequence more fragments with MHC class I

ligand potential are generated.

Table 2.5-3: Cleavage motifs of constitutive and immuno-proteasomes

Preferred (+) or disliked (-) aa residues flanking cleavage sites (↓). c20S (i20S): Frequencies of aa

surrounding cleavages performed by constitutive (immuno-) 20S proteasomes as compared to the aa

frequencies in enolase. i20S/c20S: direct comparison of the aa frequencies around immuno-

proteasome cleavages to constitutive proteasome cleavages. The results shown here are based on

pmol-quantities. Letters: aa in one-letter code. Brackets: results only slightly significant. Italic: aa

characteristics: f, flexible, b: bulky, h, hydrophobic.

By comparing flanking residues around cleavage sites, we found that both proteasomes

display a partially overlapping, but different cleavage specificity (Figure 2.5-6 and Table

2.5-3). They both prefer L as P1-residue, whereas K in P3, A in P1' and D in P2' were also

favored. Nonetheless, immuno-proteasomes have a much stronger preference for L at P1,

as well as other hydrophobic amino acids in this position. These findings point to a
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pronounced ChT-like activity after immuno-subunit incorporation. In contrast, the

acidic amino acids D and E were clearly disfavored by immuno-proteasomes, whereas

these amino acids were enriched at P1 in peptides generated by constitutive

proteasomes. Some of the different characteristics regarding amino acid preferences at

the P1 position were observed previously in a small number of fragments generated from

covalently modified lysozyme using proteasomes from bovine spleen and pituitaries

(Cardozo and Kohanski, 1998).

Our observations most likely correlate with the characteristics of amino acids at the inner

surface of the proteasome. Analysis of the contribution of individual active β-subunits to

cleavage site selection in yeast 20S protesomes (Heinemeyer et al., 1997; Nussbaum et

al., 1998), revealed that the active site of β1 prefers to cleave after acidic residues, β2

after basic residues and β5 after hydrophobic residues. Structural analysis of

proteasomes has shown that the pockets around the active site threonine of β5 and β2 do

not change after immuno-subunit incorporation (Groll et al., 1997). Therefore, it is most

likely that the cleavage site-flanking amino acids that are preferred by both proteasomes

(K in P3, L in P1, A in P1' and D in P2') correlate with the characteristics of amino acids in

vicinity of the S-1 pockets of β5/ β5i  and/or β2/β2i.

The enhanced preference for hydrophobic amino acids at P1 of immunoproteasomal

cleavages does most probably not result from exchange of β5, which mediates the ChT-

like activity, for β5i (LMP7), as replacement of β5 for β5i does not alter the pocket

surrounding the active site threonine. Moreover, functional data indicate that β5i

influences the structural features of 20S proteasomes, thereby enhancing the activity of

β1i (LMP2) (Sijts et al., 2000a; Gileadi et al., 1999). The stronger preference of immuno-

proteasomes for hydrophobic amino acids at P1, however, correlates with the

characteristics at the inner surface of the proteasome when β1 (Y) is replaced for β1i.

Replacement of β1 for β1i is predicted to cause the formation of a more apolar pocket

around the active site threonine. This most likely results in the accommodation of

hydrophobic amino acids at P1, leading to an enrichment of peptides with hydrophobic

COOH-termini, and a reduction of fragments with charged COOH-termini (Groll et al.,

1997). Thus, it is conceivable that exchange of β1 for β1i causes a reduction of peptides

with charged COOH-termini (amino acids like D and E), and enhanced liberation of

peptides with hydrophobic COOH-termini.

Structural analyses of proteasomes also predict that the active S-1 pocket of β5i is more
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constricted than the pocket of β5 (Groll et al., 1997). As most hydrophobic amino acids

are rather bulky, it is conceivable that small, flexible, nonpolar amino acids, like G, in close

vicinity to hydrophobic amino acids, support accommodation of these amino acids in the

S1 pocket of β5i most efficiently. Therefore, we anticipate that the strong enrichment of G

in P1' of cleavage sites selected by immuno-proteasomes is a direct consequence of

these altered characteristics of the β5-immuno-subunit.

The observation that the P1 preference of immuno-proteasomes closely resembles the

preferences of the F-pocket of most MHC class I-molecules is thought to explain why

immuno-proteasomes are associated with more efficient processing of MHC class I-

ligands. As some CTL-epitopes are more efficiently generated by immuno-proteasomes

(Stoltze et al., 2000), it is postulated that immuno-proteasome expression is generally

associated with more efficient CTL-epitope generation. However, the correlation between

epitope production and expression of immuno-proteasomes is more subtle. Some MHC

class I-alleles harbour F-pockets that accommodate amino acids with charged polar side

chains (e.g. K and R). These MHC alleles are unlikely to "profit" from immuno-proteasome

expression, as the trypsin-like activity is not enhanced by immuno-subunit incorporation.

More importantly, current literature indicates that immuno-subunit expression does not

exert a positive effect on all CTL-epitopes (Morel et al., 2000). In view of our results,

increased CTL-epitope generation can now be explained and also predicted by several

different mechanisms. They include enhanced liberation of the proper NH2- and/or COOH-

terminus resulting from the combination hydrophobic amino acid-small amino acid at P1

and P1' (Table 2.5-4: HbcAg 141-151, LCMV pp89, Adeno E1B), enhanced generation of

transporter-associated with antigen processing (TAP)-compatible CTL epitope precursors

(Table 2.5-4: LCMV pp89, LCMV NP) or reduced PGPH-activity leaving the CTL-epitope

intact (Table 2.5-4: Influenza A NP). However, the presence of a hydrophobic amino acid

within a CTL-epitope can also result in its destruction as shown for a CTL epitope derived

from the ubiquitous self-protein RU1 (Table 2.5-4, Morel et al., 2000).

The finding that the peptide pool generated by immuno-proteasomes differs from the one

produced by constitutive proteasomes leads to important biological consequences.

Recently, it was found that dendritic cells (DC) and other professional antigen presenting

cells (APC) express immuno-proteasomes (Morel et al., 2000). In contrast, most cells

outside the lymphoid system harbour mainly constitutive proteasomes, unless they are

exposed to inflammatory stimuli. These findings indicate that the peptide pool available to

MHC molecules, and thus for presentation to the immune system, differs substantially
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between professional APC and nonlymphoid cells.  Professional APC are not only

involved in T cell priming, but are also playing a pivotal role in central and peripheral T cell

tolerization (Sauter et al., 2000; Huang et al., 2000; Steinman et al., 2000). Professional

APC not only tolerize for endogenously expressed antigens, but also for antigens acquired

from exogenous sources (cross-tolerization) (Kurts et al., 1997). Although these antigens

are derived from nonlympoid cells that only express constitutive proteasomes, tolerance

will be induced against self-peptides that are generated by cells expressing immuno-

proteasomes. During viral infection, virus-infected cells but also neighbouring cells will be

exposed to inflammatory cytokines, leading to immuno-proteasome expression. Because

tolerance has been generated to the peptide pool expressed by cells harbouring immuno-

proteasomes, self-reactive immune attack is thus reduced to a minimum.

Table 2.5-4: Correlation between observed and predicted cleavages preferentially performed
by immuno- (i20S) or constitutive (c20S) proteasomes

These considerations might also be relevant for induction of CTL-immunity against

ubiquitously expressed self proteins. If tolerance to self proteins was restricted to peptides

generated by immuno-proteasomes, nonlympoid cells expressing constitutive

proteasomes would display peptides for which no CTL tolerance has been induced. In this

respect, it is noteworthy that all CTL-epitopes derived from ubiquitous self-proteins (like

RU1, Mage-1, gp100, Melan-A; Table 2.5-4 and Morel et al., 2000) identified thusfar are

generated less efficiently by immuno-proteasomes, whereas presentation of viral epitopes
is, in general, enhanced after immuno-proteasome expression (Table 2.5-4).
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The combination of MHC ligand motifs and constitutive-/immunoproteasomal cleavage

motifs for T cell epitope prediction will enhance progress in precise intervention of specific

immune responses. It should, for example, now be possible to identify new CTL epitopes

preferentially generated by constitutive proteasomes (like the RUI epitope). Such peptides

are attractive candidates to be used as cancer vaccines, especially if they are derived

from antigens that are, for example, overexpressed in tumors.
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3 Summary

3.1 Summary & Perspectives

In my Ph.D. research, I characterized in detail the cleavage specificities of yeast and

human proteasomes by in vitro (i.e. "in a test tube") experiments and their biochemical

and statistical analysis. In collaboration with biomathematicians, our data were used to

train computer models of the proteasome in order to apply proteasomal cleavage rules to

any aa sequence. Recently, an internet version of the resulting prediction program for

proteasomal cleavages PAProC has been instated. Thus, I have truly made a research

journey "From the test tube to the World Wide Web" during the course of my Ph.D. work.
The landmarks of the trip are summarized below.

The way for my Ph.D. thesis work was already paved by two events during my Diploma

thesis work: 1) Our lab obtained highly purified wild-type and mutant yeast 20S

proteasomes through a collaboration with the groups of Prof. Wolf (Dept. of Biochemistry,

University of Stuttgart) and Prof. Huber (MPI for Biochemistry, Martinsried). 2) I found

yeast enolase-1 to be a substrate for proteasomal degradation in vitro, without prior

covalent modification of enolase for its unfolding.

3.1.1 Summary of Results section 2.1

The cleavage specificities of the aforementioned wild-type and mutant yeast proteasomes

were initially characterized by digests of peptides containing MHC I ligands (see 2.1;

published in Dick et al., 1998). Using inhibitors differentially affecting the active sites of

20S proteasomes, we found that the so-called BrAAP-activity of the proteasome was

executed by β1/Pre3, the active site subunit generally indicated exclusively in post-acidic

cleavages. In addition, we found β2/Pup1, the subunit with T-like activity, to contribute to

cleavages after some hydrophobic and small aa. Our results confirmed the assignment of

the "classical" activities ChT-, T-like and post-acidic to the subunits β5, β2 and β1,

respectively, to be correct. In particular, β1 and β2 exclusively perform post-acidic and T-

like cleavages, respectively. The outcome of the specificity analysis is summarized in

Table 3.1-1. Moreover, our results for the first time revealed the contribution of individual

active site subunits to the generation of MHC I ligands and directly lead to the assumption

that it should be possible to "tailor" MHC I processing by active site-specific inhibitors.

Unfortunately, such strictly active site-specific inhibitors (in addition to being proteasome-
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specific) are not yet available.

Table 3.1-1: P1-residues used by yeast 20S proteasome active subunits, as deduced from the
results in 2.1.

active
β−β−β−β−subunit

P1-specificity

ββββ5/Pre2 large hydrophobic: L, Y, V, W, F, I, (M)

ββββ1/Pre3 exclusive for:

additional:

D, E (post-acidic)

L, Y

ββββ2/Pup1 exclusive for:

additional:

R, K, H (T-like)

A, (L, M)

3.1.2 Summary of Results section 2.2

Almost simultaneous to the characterization of the different yeast 20S proteasomes, I

managed to generate nice HPLC digestion profiles of enolase using the wild-type and

mutant yeast proteasomes. Their biochemical analysis for enolase fragments took many

months to be finished. The results of this analysis was presented in part 2.2 (published in

Nussbaum et al., 1998). We saw processive degradation of enolase (i.e. no generation of

large degradation intermediates) into overlapping fragments, indicating that individual

substrate molecules are cleaved slightly differently. If however the observed processivity

is brought about by an exit size filter (see 1.3.8.2), individual substrate molecules might all

be degraded in exactly the same fashion in a first round of cleavages. Overlapping

fragments might then be generated in a second round, a stochastic process influenced by

diffusion to active sites or through the exit filter. However, the distribution of cleavage sites

along the enolase sequence suggests mutually exclusive cleavages that are difficult to

reconcile with the latter hypothesis. As the truth often lies somewhere in between, it is

possible that individual substrate molecules go through a stochastic "get chopped or get
away" process from the beginning of their proteasomal degradation. Diffusion of the

substrate aa chain to different active sites ("get chopped") would be controlled by

chance much in the same way as the egress of fragments from the 20S proteasome

cylinder ("get away"). The "affinity" of the substrate sequence towards the active sites as

well as the size of the exit filter would be regulators of the process. It is tempting to

postulate that the likelihood of cleavage increases with the time a substrate sequence

remains in close proximity to the nucleophilic threonines, the time being regulated by how
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well the substrate aa sequence fits into the active site pocket. In other words, the

flanking sequences of a potential cleavage site would determine the probability for a

cleavage. There is ample evidence for this notion, and all the different models explaining

the processivity of degradation can be brought to terms with the selection of cleavage

sites on the basis of flanking sequences.

A surprising result of the enolase digestion using wild-type and mutant yeast 20S

proteasomes with partly "toothless" active sites was the fact that the distribution of

fragment lengths did not significantly vary between the proteasomes. This finding was not

in agreement with the classical view of the molecular ruler hypothesis, according to which

the distance of active sites in proteasomes determines the fragment length (see 1.3.6).

Our results therefore represent the strongest evidence against the molecular ruler

hypothesis to date.

The main reason, however, for which we had attempted the time-consuming analysis of

so many enolase fragments was the search for the rules governing cleavage site selection

by eucaryotic proteasomes. We found that all three active site subunits contributed to the

degradation of enolase, as judged by missing cleavage sites in proteasome mutants

lacking particular activities. There seems to exist some redundancy in the system, as the

cleavages of missing activities were replaced by alternative cleavages of present

activities, resulting in similar fragment lengths. This was even true for proteasomes

lacking the activity of β5/Pre2, a mutation that is lethal in yeast. Similar to the findings in

2.1, we saw that β1 and β2 exclusively perform post-acidic and T-like cleavages,

respectively, and that they contribute to cleavages after small and hydrophobic aa, such

as A, F, G, I, L, M, N, Q, S, V, W, Y (Table 2.2-1). The most prominent P1-residues found

in digests by wt yeast proteasomes were L (selected by β5/Pre2), R (β2/Pup1) and D

(β1/Pre3). We could deduce cleavage motifs, i.e. the preferred flanking aa around

cleavage sites, for each of the three activities by combinatorial and substractive analysis

of the results obtained using the different mutant proteasomes (Table 2.2-2). Interestingly,

the cleavage motifs for β5/Pre2 and β2/Pup1 matched the inner surface of the substrate

binding pockets of these subunits (Figure 3.1-1).

Unfortunately, there was only one proteasome available in which two activities had been

silenced. This proteasome only carried β5/Pre2 as active subunit. Such 'single-activity'

proteasomes would be best to determine the cleavage preferences of the individual active

site subunits. However, they seem to be difficult to generate.
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Soon after the analysis of the experiments using yeast proteasomes I finished the

analysis of an enolase digest using human erythrocyte 20S proteasomes (see 2.2.9).

Their cleavage preferences were less pronounced than those of the wild-type yeast

proteasomes, but largely overlapped for the size of fragments (Figure 2.2-7) and the

cleavage motif (Table 2.2-3).

Figure 3.1-1: The inner surfaces of the substrate binding pockets of ββββ5/Pre2 (A) and ββββ2/Pup1
(B) correlate to the cleavage motifs of these subunits (see Table 2.2-2)

(A) A pocket lined by polar aa residues could accommodate polar P3-residues found in the cleavage

motif of β5/Pre2. On the P1' side, two Asp residues might be responsible for the enrichment of basic

P1' residues in the cleavage motif. (B) An acidic P3 pocket in β2/Pup1 could interact with Lys

residues at P3 of the substrate chain. The enrichment of the bend-promoting aa Gly and Pro on the

P'-side of β2/Pup1-substrates might be imposed by a steric obstacle ("C-terminal wall") that blocks

the way. P1: location of the nucleophilic Thr residue. The location of the substrate chain was fitted to

the known position of the propeptides found in the crystal structure of mutant yeast proteasomes.

3.1.3 Summary of Results sections 2.3 and 2.4

In order to turn our experimental results into a prediction tool for proteasomal cleavages,

we sought the help of people at the Department for Biomathematics of Prof. Hadeler at

the University of Tübingen. To obtain a simple model with few parameters, we constructed

a proteasome model inspecting a flanking window of several aa around the cleavage

sites. This model was then trained with our different experimental data in the fashion of an

evolutionary algorithm, aiming at the reproduction of the training data. Trial and error led

to an optimal flanking window P6-P1',P4' (P2' and P3' omitted) around the cleavage site

for the model to decide about a cleavage. Together with the aa-pair at P1/P1', especially

the residues at P5 and P4 were of great importance for the model. For all sets of

experimental data, the algorithms arrived at nearly perfect reproduction of the training
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data. A data set of randomly selected cuts was not reproduced as efficiently as actual

proteasomal cleavage data, suggesting that there were regularities/rules present in the

experimental data and that our mathematical proteasome model could detect them. In

fact, the theoretical proteasomes used basically the same kind of rules ("affinity

parameters") for cleavage site selection as the rules we had previously determined

statistically from our experimental data. The algorithm trained with human proteasome

data reached almost 90% precision in the prediction of cleavages that had not been

included in the training data (see 2.3, published in Kuttler et al., 2000).

The predictive power of the algorithms was not satisfactory for all test sequences. We

found evidence that mainly the lack of training data is to blame for that. It is also possible

that our proteasome model is not accurate enough. The current model, for example,

weighs the influence of aa residues at certain positions within the inspected window

independently of the aa at other positions. However, experimental results indicate that this

might be too simple an approach. In order to improve the performance of the prediction it

might therefore be necessary to come up with a model that considers the identity of all

other aa in the inspected window when judging the influence of a particular aa at a fixed

position. Moreover, it might be necessary to include positions P2' and P3' into the

inspected window for future sets of experimental data. These positions seem important for

cleavage site selection by human 20S proteasomes from LCL cells (see 2.5). We are

therefore continuously struggling to refine the model and to generate and gather more

training and test data. Refined models that can accommodate quantified experimental

cleavage data have already been developed for the experimental data introduced in 2.5.

We have only recently made our prediction algorithms available via World Wide Web

under the name PAProC (for Prediction Algorithm for Proteasomal Cleavages,

www.paproc.de; see 2.4; Nussbaum et al., in press), a user-friendly program that can

easily be handled by researchers unfamiliar with proteasomes. In addition we have

provided background information for users to expand their knowledge about proteasomes.

It might be risky to make PAProC available at a time when the performance of the

predictions is still suffering from the aforementioned teething troubles: Users could lose

faith in PAProC before it reaches higher predictive power. However, we specifically ask for

and hope to get feedback from users that should allow us to improve PAProC. In

particular, PAProC could turn into a platform for the collection of experimental cleavage

data. This would probably most efficiently improve the predictions. During the first four

months of its existence, PAProC has already been accessed more than 1000 times by

researchers from all over the world, although it will only be announced in a peer-reviewed

http://www.paproc.de;/
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journal in a few months (Nussbaumet al., in press).

In collaborations with S. Brunak/C. Kesmir (Copenhagen), C. Melief/F. Ossendorp

(Leiden) and G. Holzhütter/H. Mollenkopf (Berlin) we are trying to establish more reliable

proteasomal cleavage prediction. This group of people combines the know-how of

experienced proteasome researchers and mathematical and computational skills. The

neural networks by C. Kesmir or the algorithms by G. Holzhütter might ultimately perform

better than PAProC, although first comparative results do not support this view. The

experimental data generated in the group of F. Ossendorp could complement the training

data for PAProC and other prediction tools. Eventually, all groups working on the

prediction of proteasomal cleavages want to create a link between the prediction of MHC I

ligands and proteasomal cleavages. For the above-mentioned reasons (see 1.5) such

combined prediction could be valuable in the search for CTL epitopes. The "manual"

combination of SYFPEITHI and PAProC has led to a superior prediction of candidates for

CTL epitopes from different protein sequences (see Table 2.4-1). However, this did not

hold true for all test cases. Again, the lack of training data for the PAProC algorithms
seems to be the reason for weaknesses in the predictive power.

3.1.4 Summary of Results section 2.5

The differential effects of immuno-proteasomes on the generation of CTL epitopes was

pointed out above (1.3.7.3). In order to come up with general rules for cleavages by

immuno- versus constitutive proteasomes, we compared their cleavage preferences in

digests of enolase (part 2.5, Toes et al., submitted for publication). The analysis of

enolase fragments was now performed in a strictly quantitative way. No differences were

found for the lengths of fragments produced by the two proteasome species; their sizes

ranged from 3-26 aa with an average length of 7-9 aa. However, individual fragments and

thus cleavages sites only partially overlapped. We found that immuno-proteasomes, as

compared to constitutive proteasomes, have a more pronounced preference for cleavages

after large, hydrophobic aa (L, F), but do not cleave after acidic residues any more. In

addition to this confirmation of earlier results, we could extend the knowledge on cleavage

site selection by immuno- and constitutive proteasomes to several residues flanking the

cleavage sites (see Table 2.5-3). Interestingly, the cleavage motifs we determined

properly explain many effects of immune-proteasomes on CTL epitope processing and

presentation (Table 2.5-4). Our quantified data are already being used to train refined

algorithms for the prediction of proteasomal cleavages. We are confident that the

application of quantified cleavage data for cleavage site prediction and the differentiation
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between the cleavage preferences of immuno- and constitutive proteasome will

substantially improve the predictive power of PAProC. Preliminary results show that an

algorithm trained with immuno-proteasome cleavages is better at predicting the cleavages

at the C-termini of MHC I ligands. However, it is too early to draw final conclusions about

the performance of the new algorithms.

3.2 Unmentioned and Ongoing Projects

3.2.1 Insensitivity of β-peptides to proteasomal cleavage7

Peptide-analogs are amino acid chains with unusual structural features, such as D-

instead of L-aa or more stable bonds than peptide bonds to connect the single aa. Despite

of their structural differences, peptide analogs can be biologically active. On the other

hand, they are usually resistant to enzymatic degradation and therefore stable once

brought into a target organism. Long-lived peptide-analogs with biological activity are thus

pharmacologically interesting. One group of peptide analogs are ββββ-peptides, which are

built from aa with an additional CH2-group between the α-C-atom and the terminal

carboxy group. In a collaboration with Jürg Schreiber from the ETH Zürich, I was able to

show that neither the multicatalytic proteasome nor very vigorous proteases or protease

mixes such as Pronase and Proteinase K were able to degrade β-peptides in vitro

(Seebach et al., 1998). These results suggest that β-peptides might be long-lived in the

cytosol of cells and hence have important implications for their use as pharmacological
agents.

3.2.2 Directionality – a story with an end?

If proteins are degraded by proteasomes in a processive way (see 1.3.8), then it might be

required that the substrate enters the proteolytic chamber in a defined direction, either

starting with the  N- or with the C-terminus of the aa chain. To find the 'end' of the

substrate that is inserted/degraded first, we constructed several modified versions of

enolase. By making use of the single Cys residue approximately in the middle of the

enolase sequence (at position 247 of 436), we coupled gold-beads, agarose-beads and

rhodamine to enolase. We hoped that the bulky obstacle would inhibit full entry of enolase

                                               

7 The publication summarized here is part of the prospective Ph.D. theses of Stefan Abele and Jürg

V. Schreiber, ETH Zürich.
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into the proteasome cylinder, but still expected to see partial enolase degradation. The

left-over half of enolase and the generated fragments from the other, degraded half should

have made it possible to identify the enolase terminus degraded first. Unfortunately, none

of these experiments yielded any result as proteasome activity was in all cases completely

blocked, probably by adsorption to the beads or inhibitory effects of the chemical groups

coupled to enolase. A different try using miniature dialysis chambers to "pull out" early

degradation products was too insensitive to detect casein or enolase fragments before

single substrate molecules were completely degraded.

This project, which was originally started by Tobias P. Dick, was continued by David

Gatfield, who constructed recombinantly a Casein-derived Artificial Proteasome Substrate

(CAPROS) for radioactive labeling during his Diploma thesis project. The project is

currently carried on by Ph.D. student Stefan Tenzer who will perform the radioactive

labeling and the actual digestion experiments. If it is possible to stop the experiment after

one protein terminus has been degraded and before the other terminus has been touched,

then it should theoretically be possible to determine a degradation direction for CAPROS.

The use of a radioactively labeled protein substrate will hopefully overcome the problem of

sensitivity in the previous approaches.

3.2.3 The Gly-Ala story

When we were looking for a method to block enolase degradation in order to determine

the directionality of degradation, we remembered the observation that the Gly-Ala-repeat

region (GARR) from Epstein-Barr virus nuclear antigen 1 (EBNA1) inhibits proteasomal

degradation of proteins harboring GARRs (Levitskaya et al., 1995; Levitskaya et al., 1997;

Sharipo et al., 1998). The mechanism for this inhibition not being known, we assumed that

the GARR physically inhibited proteasomal digestion on the level of the 20S proteasome

core. (Later it was reported that a 22 aa long GARR inserted into IκBα exhibits random

coil structure, thus eliminating structural stabilization as reason for protection from

proteasomal degradation; Leonchiks et al., 1998). It therefore came as a surprise to us

when 20S proteasomes in vitro were perfectly able to degrade enolase harboring a GARR

of about 20 aa. This observation meant we could not use the GARR to determine

directionality, but at the same time it raised our interest in the mechanism by which

GARRs block proteasomal degradation. Our proteasomal cleavage algorithms predicted

GARRs to be spared from proteasomal cleavages (2.3). This hint proved right in digestion

experiments using various (roughly 30mer) peptides harboring an 8 aa GARR: Whereas

the rest of the peptide was extensively cleaved, the GARR stayed untouched.
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Interestingly, the presence of the GARR prolonged the half-life of the GARR-

containing peptide substantially, confirming a stabilizing effect for the whole polypeptide,

not just for the GARR itself, as already observed with GARR-containing proteins.

Unfortunately, we have up to now not been able to investigate the degradation of GARR-

containing enolase in cells. Despite the valiant efforts of David Gatfield during his Diploma

thesis, we continuously had problems with the immunoprecipitation of cmyc-tagged

enolase from the cells in pulse-chase experiments.

In the near future, we would like to examine the in vitro digestion of  enolase containing

longer GARRs, as it was recently reported that the length of the GARR determines protein

stability (Dantuma et al., 2000). Besides, we will test whether the related Gly-Ser-Ala-

regions from monkey viruses (Blake et al., 1999) also inhibit proteasomal cleavages in in

vitro peptide substrates. We are currently analyzing whether GARR-containing peptides

and proteins interfere with the functions of the 26S proteasome, for example by the

binding and therefore competition of the hydrophobic GARRs to ubiquitin-recognition sites
in the 19S cap.

The work with GARRs has brought other proteins with unusual aa repeat sequences to

my attention, most notably poly-glutamine (polyQ)-containing proteins implicated in the

generation of neurodegenerative diseases such as Huntington's disease and several

forms of spinocerebellar ataxias (see 2.4 for more information). We have just initiated a

collaboration with G.B. Landwehrmeyer and K.S. Lindenberg from the Department for

Neurology, Experimental Neurology, University of Ulm, Germany, in order to investigate

the role of proteasomes in the accumulation of polyQ-proteins in neurons, a possibly

critical factor in the onset of disease.

3.2.4 When does the PA28-effect kick in?

Despite earlier reports denying a role for the proteasome activator PA28 in protein

degradation (Dubiel et al., 1992), I assumed that PA28 not only participates in the

generation of peptides, but must also have a function in the degradation of proteins.

Therefore I tried to show that PA28 can accelerate the degradation of FITC-labeled bovine

β-casein by human 20S proteasomes in vitro, which was not successful: PA28-activated

proteasomes with increased activity towards short fluorogenic model substrates did not

degrade FITC-casein faster than just 20S proteasomes alone. However, I observed in

HPLC-chromatograms that the signals for (what looked like) intermediate degradation

products of casein were shifted faster to early retention times (i.e. smaller degradation
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products) in the presence of PA28. My interpretation of this result was that the

activating effect of PA28 only "kicks in" when the degradation products have reached a

certain "smallness". This hypothesis is in line with the latest results that PA28 induces the

α-rings of 20S proteasomes to open (Whitby et al., 2000; see Introduction 1.3.7.1). The

diffusion of peptides in and out of the proteolytic chamber, that is most likely regulated by

the α-ring opening, is probably most effective for small peptides. Therefore, once

degradation products have reached a threshold "tininess", their increased diffusion could

accelerate their degradation into even smaller fragments.

In order to test the hypothesis that PA28-mediated proteasome activation only affects

protein fragments of a threshold size, in future experiments substrates of different sizes

will be incubated with 20S proteasomes in the presence and absence of PA28. If a

threshold size exists, differences in the initial velocity of degradation should be detected

for the substrate of the critical size.
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6 Abbreviations
aa aa residue(s) = amino acid(s)

AMC 7-amino-4-methylcoumarin

APC antigen presenting cell

BrAAP Branched amino acid peptidase

Bz Benzoyl

CAPROS Casein-derived artificial proteasome substrate

ChT chymotryptic activity

CTL cytotoxic T lymphocyte

EBNA1 Epstein-Barr virus nuclear antigen 1

EBV Epstein-Barr virus

EDTA ethylendiamine-tetraacetate

ER endoplasmic reticulum

Fmoc 9-fluorenylmethoxycarbonyl

FPLC fast performance liquid chromatography

GARR Gly-Ala-rich region

HEPES N-2-hydroxyethylpiperazin-N'-2-ethansulfonic acid

HLA human leukocyte antigen

IFN interferon

Ig immunoglobulin

JAK Janus-kinase

LMP low molecular weight polypeptide

MALDI matrix-assisted laser desorption ionization

MHC I/II major histocompatibility complex class I/II

MS mass spectrometry / mass spectrometric

NP nucleoprotein

Ntn N-terminal nucleophile

PAGE polyacrylamide gel electrophoresis

PAProC Prediction Algorithm for Proteasomal Cleavages

PDI protein disulfide isomerase

PGPH peptidylglutamylpeptide-hydrolysing

polyQ poly-glutamine

RP-HPLC reversed phase high performance liquid chromatography

SDS sodiumdodecylsulfate

SNAAP small neutral amino acid peptidase

Suc succinyl

T tryptic activity

TAP transporter associated with antigen processing

TCR T cell receptor

T-like Trypsin-like
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TOF time of flight

Ub ubiquitin

VSV vesicular stomatitis virus

wt wild-type

WWW world-wide web

Z benzyloxycarbonyl

β2m β2-microglobulin

Abbreviations for amino acid names:

1-letter code 3-letter code Full name Selected properties

A Ala Alanine small

C Cys Cysteine small, polar

D Asp Aspartic acid negative charge

E Glu Glutamic acid negative charge

F Phe Phenylalanine bulky, hydrophobic

G Gly Glycine small

H His Histidine positive charge

I Ile Isoleucine branched-chain, hydrophobic

K Lys Lysine positive charge

L Leu Leucine branched-chain, hydrophobic

M Met Methionine hydrophobic

N Asn Asparagine polar

P Pro Proline kinked, polar

Q Gln Glutamine polar

R Arg Arginine positive charge

S Ser Serine small, polar

T Thr Threonine small, polar

V Val Valine branched-chain, hydrophobic

W Trp Tryptophan bulky, hydrophobic

Y Tyr Tyrosine bulky, hydrophobic
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