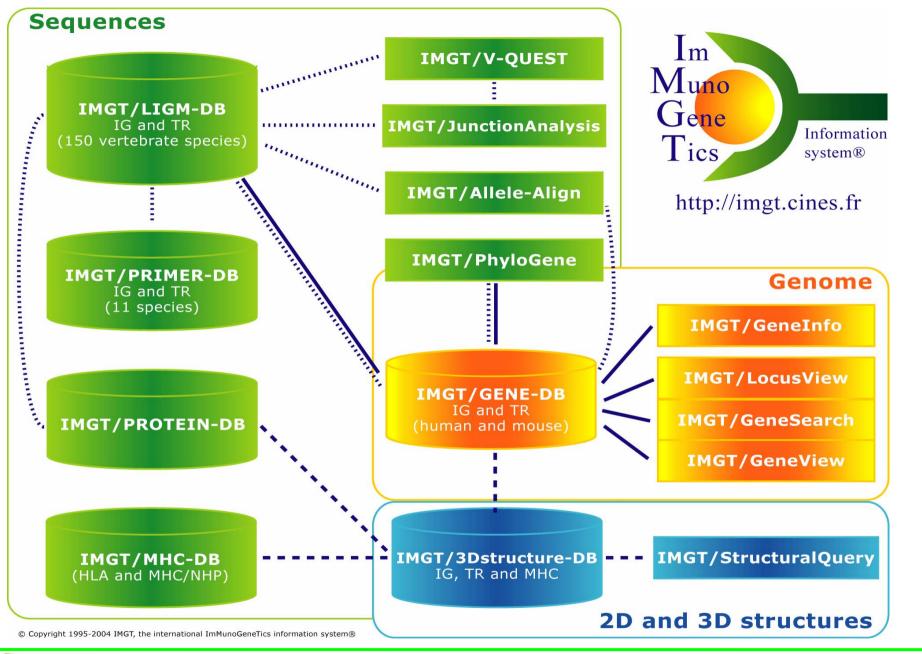
IMGT/V-QUEST and IMGT/JunctionAnalysis:

The standardized approach for IG and TR rearrangement analysis

Xavier Brochet

Laboratoire d'ImmunoGénétique Moléculaire Université Montpellier, UPR CNRS 1142, IGH

> First Immunomics Summer School 24 August - 3 September 2007


IMGT was created in June 1989, during the Human Genome Meeting HGM 10

IMGT® was created to answer the need to manage the immunoglobulin (IG) and T cell receptor (TR) related data.

IMGT/V-QUEST and IMGT/JunctionAnalysis

IMGT/V-QUEST and **IMGT/JunctionAnalysis**, part of IMGT®, the international ImMunoGeneTics information system®, analyse the IG and TR rearranged V-D-J and V-J sequences.

1) identify the V, (D) and J genes and alleles involved in the rearrangements.

2) provide a detailed and accurate description of the sequences.

Results are according to the IMGT Scientific chart rules, based on the IMGT-ONTOLOGY axioms.

IMGT/V-QUEST and IMGT/JunctionAnalysis

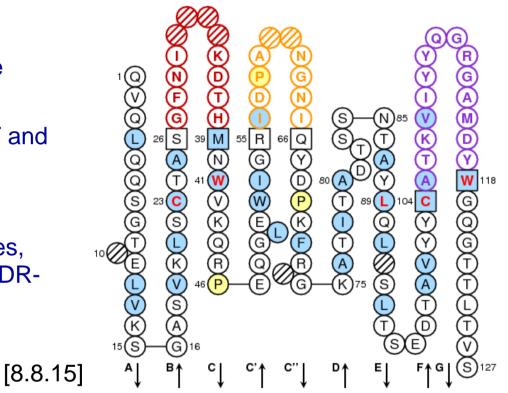
IMGT/V-QUEST

- compares the user's sequences with the IMGT reference sequences (IMGT reference directory: CLASSIFICATION axiom)
- displays the nucleotide and protein alignments according to the IMGT Scientific Chart rules (IMGT labels: DESCRIPTION axiom)
- provides an extensive analysis of the mutations (IMGT unique numbering: NUMEROTATION axiom)

IMGT/JunctionAnalysis

 analyses accurately the junctions of IG and TR rearranged sequences: identifies IGHD, TRBD and TRDD genes and alleles, N- and P REGION, "gc" content, amino acid physicochemical properties, PI, etc.

> Giudicelli et al. Nucleic Acids Res 32:435:440 (2004) Yousfi Monod et al. Bioinformatics 20:379-385 (2004)



Specificities of IMGT/V-QUEST algorithm

IMGT unique numbering rules

- maintain conserved AA, and therefore codons, at the same positions
- -standardize the delimitations of FR-IMGT and CDR-IMGT

Gaps are inserted in IMGT reference sequences, taking into acount the variable lengths of the CDR-IMGT

IMGT proposes for the first time a standardized description of the V-DOMAIN, whatever the antigen receptor, the chain type and the species.

IMGT/V-QUEST algorithm

In order to respect the IMGT unique numbering rules:

→ The IMGT/V-QUEST algorithm is based on a global alignment which does not accept any insertion and/or deletion

→ Gaps are integrated into the user sequence, according to the IMGT unique numbering, by comparison with a model sequence of the IMGT reference directory.

IMGT/V-QUEST web interface (http://imgt.cines.fr)

WELCO	ME!		
to the	IMGT/V-QUEST	Search	page

THE INTERNATIONAL IMMUNOGENETICS INFORMATION SYSTEM®

Citing IMGT/V-QUEST: Giudicelli, V. et al. Nucl. Acids Res. 2004, 32, W435-440 PMID: 15215425

■ You are in the new IMGT/V-QUEST upgraded for multiple sequences and with new functionalities. ■ EW!

Analyse your Immunoglobulin nucleotide sequences

۹.	Human	۹	Teleostei
4	Mouse		- <u>Atlantic cod</u> - <u>Channel catfish</u> - <u>Rainbow trout</u>
2	Rat (test for IGHV2 and IGHV5 subgroups)		
٥.	Chondrichthyes	٩	Sheep
Analj Q Q	yse your T cell Receptor nucleotide sequences Human Mouse	٩	<u>Non-human primates</u>

IMGT/VQUEST+JCTA QUERY PAGE

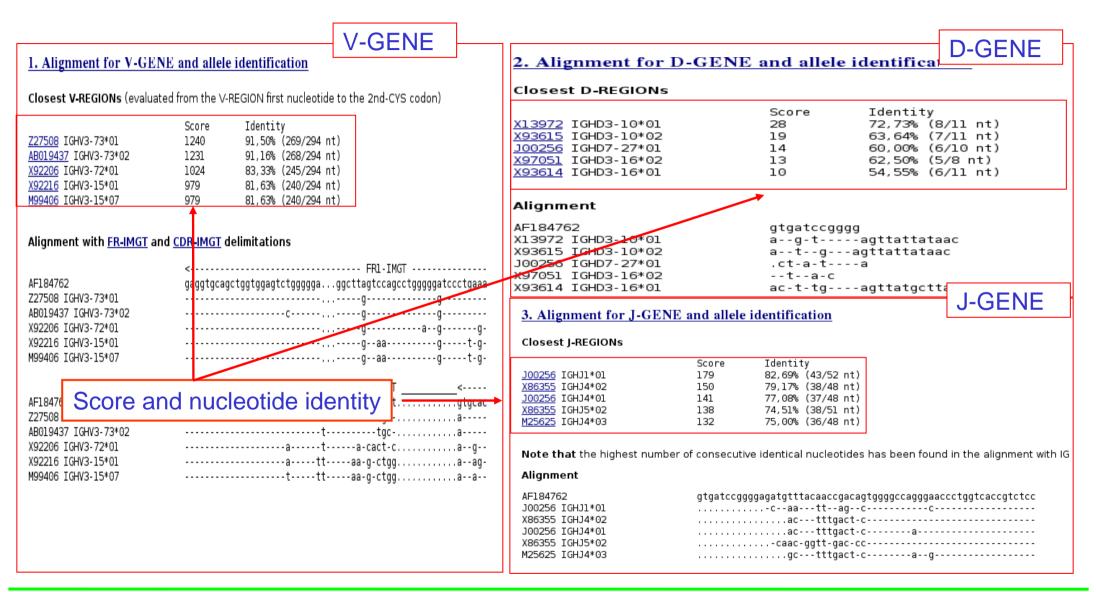
1. "Detailed view" results: Summary

Sequence number 1: AF184762

Sequence compared with the human IG set from the IMGT reference directory

>AF184762

Automatic interpretation


Result summary:	Productive IGH	I rearranged sequ	Jence (no stop codon and in frame junction)
V-GENE and allele	IGHV3-73*01	score = 1240	identity = 91,50% (269/294 nt)
J-GENE and allele	IGH 1*01 (a)	score = 179	identity = 82,69% (43/52 nt)
D-GENE and allele by IMGT/JunctionAnalysis	IGHD3-10*01	D-REGION is in re	ading frame 3
CDR-IMGT lengths and AA JUNCTION	[8,10,10]	CVIRGDVYNRQW	

(a) Other possibilities: IGHJ4*02 and IGHJ5*02 (highest number of consecutive identical nucleotides)

2. "Detailed view" results: V,D and J alignments

3. "Detailed view" results: IMGT/JunctionAnalysis

4. Results of IMGT/JunctionAnalysis

Maximum number of accepted mutations in: 3'V-REGION = 2, D-REGION = 4, 5'J-REGION = 2

Analysis of the JUNCTION

D-REGION is in reading frame 3.

Click on mutated (underlined) nucleotide to see the original one:

Input	V name	3'V-REGION	Nl	D-REGION	N2	5'J-REGION	J name	D name	Vmurt	Dmurt	Jmut	Ngc
AF184762	<u>IGHV3-73*01</u>	tgt	g	t <u>ga</u> t <u>c</u> cggggag <u>a</u> t <u>g</u> tt	tacaaccga	cagtgg	<u>IGHJ1*01</u>	<u>IGHD3-10*01</u>	0	4	1	5/10

Translation of the JUNCTION

Click on mutated (underlined) amino acid to see the original one:

	104	105	106	107	108	109	113	114	115	116	117	118	Frame	CDR3-IMGT length	Molecular mass	pI
	С	v	Ī	R	G	D	V	Y	N	R	Q	W				
AF184762	tgt	gtg	<u>a</u> t <u>c</u>	cgg	gga	<u>ga</u> t	gtt	tac	aac	cga	cag	tgg	+	10	1,508.72	9.24

Be aware that some allele reference sequences may be incomplete or from cDNAs. In those cases, IMGT/JunctionAnalysis uses automatically the allele *01 for the analysis of the JUNCTION.

5. Sequence of the JUNCTION ('nt' and 'AA')

4. "Detailed view" results: mutations analysis

V-REGION mutation table

FR1-IMGT	CDR1-IMGT FR2-IMGT C		CDR2-IMGT	FR3-IMGT	CDR3-IMGT
g36>a	t88>c, F30>L (+)	a115>g, M39>∨ (+)	t168>c	g211>a, ∨71>M (+)	a313>g, T105>∨ ()
g51>a	t99>a	t135>c	g170>a, R57>K (+ + +)	a215>g, K72>R (+ + +)	c314>t, T105>∨ ()
	g100>a, A34>N ()		c174>g, S58>R ()	t226>c, F76>L (+)	t315>g, T105>∨ ()

Mutation hotspot (motifs and positions in germline V-REGION)

(a/t) <u>a</u> ^{wa}		(a/g)g(c/t)(a/t) rgyw	(a/t)(a/g) <u>c</u> (c/t) ^{wr<u>c</u>y}	<u>t(a/t)</u> tw			
Motif	Positions	Motif	Positions	Motif	Positions	Motif	Positions		
aa	58-59 (FR1)	agct	8-11 (FR1)	agct	8-11 (FR1)	tt	34-35 (FR1)		
aa	142-143 (FR2)	ggct	31-34 (FR1)	agcc	41-44 (FR1)	tt	82-83 (CDR1)		
ta	165-166 (FR2-CDR2)	ggtt	80-83 (CDR1)	aact	59-62 (FR1)	tt	88-89 (CDR1)		
ta	168-169 (CDR2)	ggct	94-97 (CDR1)	agcc	72-75 (FR1)	tt	135-136 (FR2)		
aa	171-172 (CDR2)	ggct	132-135 (FR2)	tgct	99-102 (CDR1)	tt	158-159 (FR2)		
aa	175-176 (CDR2)	ggct	146-149 (FR2)	agct	177-180 (CDR2)	ta	165-166 (FR2-CDR2)		
ta	180-181 (CDR2)	ggtt	156-159 (FR2)	tgct	201-204 (FR3)	tt	167-168 (CDR2)		
ta	187-188 (CDR2)	agca	172-175 (CDR2)	agcc	277-280 (FR3)	ta	180-181 (CDR2)		
ta	199-200 (FR3)	agct	177-180 (CDR2)	aacc	285-288 (FR3)	tt	186-187 (CDR2)		
aa	214-215 (FR3)	agtt	184-187 (CDR2)	tact	307-310 (FR3)	ta	199-200 (FR3)		
aa	249-250 (FR3)	agca	195-198 (CDR2)	tact	312-315 (FR3)	tt	226-227 (FR3)		
aa	253-254 (FR3)	ggca	220-223 (FR3)	-		tt	246-247 (FR3)		
ta	262-263 (FR3)	ggtt	224-227 (FR3)			ta	262-263 (FR3)		
aa	269-270 (FR3)					ta	304-305 (FR3)		
aa	274-275 (FR3)					tt	306-307 (FR3)		
aa	283-284 (FR3)					ta	312-313 (FR3)		
aa	285-286 (FR3)					ta	315-316 (CDR3)		
ta	304-305 (FR3)								
ta	307-308 (FR3)								
ta	312-313 (FR3)								
ta	315-316 (CDR3)								

V-REGION mutation statistics

NUCIEOTIDES	•							
IMGT Label		V-REGION	FR1-IMGT	CDR1-IMGT	FR2-IMGT	CDR2-IMGT	FR3-IMGT	CDR3-IMGT
Total nucleot with gaps	ides	312 (318)	78	36	51	30	117	0 (6)
	Total	25 (30)	2	4	2	9	8	0 (5)
Mutations	Silent	8	2	1	1	з	1	0
	Non silent	17 (22)	0	з	1	6	7	0 (5)
	a>g	3 (4)	0	0	1	1	1	0(1)
Transitions	g>a	6	2	1	0	1	2	0
Transitions	c>t	1 (2)	0	0	0	0	1	0(1)
	t>c	4	0	1	1	1	1	0
	a>c	0(1)	0	0	0	0	0	0(1)
c>a		1	0	1	0	0	0	0
	a>t	з	0	0	0	2	1	0
			0	2	0	-	0	0

V-REGION mutation statistics

Amino acids

IMGT labels			V-REGION	FR1-IMGT	CDR1-IMGT	FR2-IMGT	CDR2-IMGT	FR3-IMGT	CDR3-IMGT
Total amino acids (AA) with gaps			104 (106)	26	12	17	10	39	0 (2)
Identical AA			89	26	10	16	5	32	0
Total			15 (17)	0	2	1	5	7	0 (2)
		()	3 (4)	0	1	0	2	0	0(1)
		(+ + +)	2	0	0	0	1	1	0
AA changes	Conserved IMGT AA classes	(+)	7	0	1	1	2	3	0
AA changes	(hydropathy,	(- + -)	1 (2)	0	0	0	0	1	0(1)
	volume, chemical)	(+)	0	0	0	0	0	0	0
		(+ + -)	0	0	0	0	0	0	0
		(+ - +)	2	0	0	0	0	2	0

Who are the IMGT/V-QUEST users?

1. IG and TR genome diversity and evolution studies

•genome diversity and genome evolution studies of the adaptive immune responses

•veterinary research (analysis of IG and TR repertoires in farm, wild life and model animal species)

Comparison of IG and TR from newly sequenced genomes is done versus complete known loci. For example: non-human primates vs human, rat vs mouse, etc.

2. Biotechnology related to antibody engineering

single chain Fragment variable (scFv)

phage displays

combinatorial libraries

•chimeric, humanized and human antibodies

Humanization of antibodies based on standardized human FR-IMGT and non-human CDR-IMGT allows to decrease immunogenicity and to maintain specificity.

Who are the IMGT/V-QUEST users?

3- Fundamental and medical research

Repertoire analysis of the IG antibody sites and of the TR recognition sites:

in normal situations
in pathological situations (autoimmune diseases, infectious diseases, AIDS, leukemias, lymphomas, myelomas)

Diagnostics

clonalities in leukemias, lymphomas

•detection and follow up of residual diseases

Prognostic factor in Chronic Lymphocyte Leukemia (CLL)

- •"unmutated" IGH V-REGION (identity > 98%): bad prognostic
- •"mutated" IGH V-REGION (identity < 98%): good prognostic

ERIC, the European Research Initiative on CLL (www.ericll.org) recommands IMGT/V-QUEST for such studies

IMGT, the international ImMunoGeneTics information system® http://imgt.cines.fr

The IMGT team at Montpellier, France

Acknowledgements: IMGT team ImmunoGrid partners MARIE Network Many thanks to the First *Immunomics* Summer School organizers

