

Nomenclature des anticorps:

d'IMGT-ONTOLOGY à la définition DCI

Marie-Paule Lefranc

IMGT® Fondateur et Directeur, Professeur Université Montpellier 2, IGH UPR CNRS 1142, Montpellier

GDR 3260 – ACCITH, Marseille, 25-26 Novembre 2010

From IMGT-ONTOLOGY to INN definition

1. Antibodies (mAb) and fusion proteins for immune applications (FPIA) represent a large number of the pharmaceutical substances submitted to the World Health Organization/International Nonproprietary Names (WHO/INN) Programme.

DCI: Dénomination Commune Internationale
World Health Organization. INN Working Document 09.251.Update 18/12/2009

- 2. The INN definition of antibodies is based on the IMGT-ONTOLOGY concepts of:
- classification (nomenclature)
- description (labels)
- numerotation (IMGT unique numbering).

Lefranc M-P. mAbs 3:1-2 (2011)

Monoclonal antibodies (INN -mab) and fusion proteins for immune applications (FPIA) (INN -cept) on the market

5 Human mAbs	adalimumab (2002) HUMIRA® /	panitumumab (2006) VECTIBIX™	golimumab (2009) SIMPONI™	canakinumab (2009) ILARIS®	<u>ustekinumab</u> (2009) STELARA™
	TRUDEXA®				

ſ	5 Murino	muromonab-CD3	edrecolomab	ibritumomab tiuxetan	tositumomab	<u>capromab</u>
ı	5 Murine mAbs	(1992)	(1995)	(2002)	(2003)	(1996)
ı	IIIADS	ORTHOCLONE OKT3®	PANOREX®	ZEVALIN®	BEXXAR®	PROSTASCINT®

5 Chimeric	<u>abciximab</u>	<u>rituximab</u>	<u>basiliximab</u>	<u>infliximab</u>	cetuximab
	(1994)	(1997)	(1998)	(1998)	(2004)
mAbs	REOPRO®	MABTHERA® / RITUXAN®	SIMULECT®	REMICADE®	ERBITUX®

ı		<u>daclizumab</u>	<u>palivizumab</u>	trastuzumab	<u>alemtuzumab</u>	<u>omalizumab</u>	<u>ranibizumab</u>	<u>eculizumab</u>	<u>natalizumab</u>	<u>bevacizumab</u>	certolizumab pegol	<u>nimotuzumab</u>
ı	11 Humanized	(1997)	(1998)	(1998)	(2001)	(2003)	(2006)	(2007)	(2008)	(2008)	(2008)	(2008)
ı	mAbs	ZENAPAX®	SYNAGIS®	HERCEPTIN®	CAMPATH® /	XOLAIR®	LUCENTIS®	SOLIRIS™	TYSABRI®	AVASTIN®	CIMZIA®	THERACIM®
4					MABCAMPATH®							

4 FPIA	etanercept	alefacept	abatacept	rilonacept
	(1998)	(2003)	(2005)	(2008)
	ENBREL®	AMEVIVE®	ORENCIA®	ARCALYST™

Conjugated and radiolabelled monoclonal antibodies

Monoclonal antibodies can be used:

conjugated with another molecule

- Ex: gentuzumab ozogamicin, MYLOTARG

 Ex: gentuzumab ozogamicin, MYLOTARG

 Scientists believe Alexander the Great was killed by calicheamicin, a dangerous compound produced by a bacteria (*Micromonospora echinospora*) found in water. (Squires N., Telegraph, 03 August 2010)
- → Exotoxin A from Pseudomonas Aeruginosa

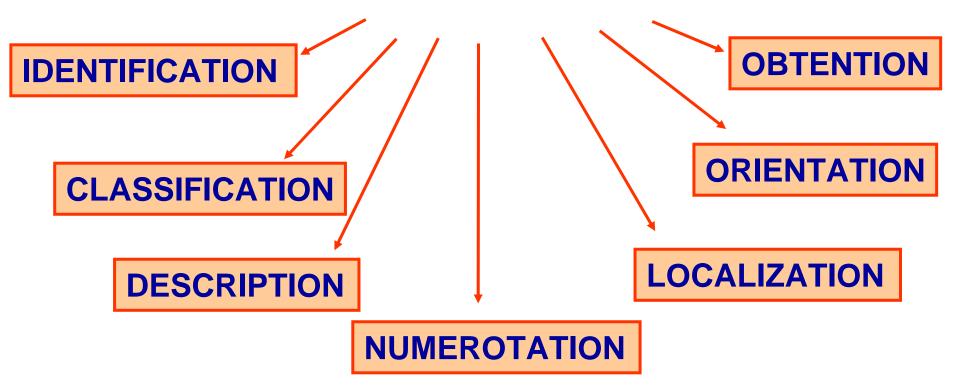
 Ex: oportuzumab monatox, PROXINIUM™ VICINIUM™
- Monomethyl auristatin E (MMAE), a synthetic antineoplastic agent
 Ex: glembatumumab vedotin
- → Bouganin, from Bougainvillea spectabilis Willd toxin Ex: citatuzumab bogatox

radiolabelled with an isotope

→ Indium-111:
Half-Life 2.80 days, used in nuclear medicine to observe tumors and LCD manufacturing,
Ex: capromab, PROSTASCINT®

→ lodine-131:

Half-Life 8 days, used in nuclear medicine to observe a thyroid gland and radiothe rapy on cancers such as lymphoma, Ex: tositumomab, BEXXAR®


In November 2010, IMGT/mAb-DB contains: 17 INN radiolabelled and 11 INN conjugated.

IMGT-ONTOLOGY

IMGT-ONTOLOGY seven axioms:

To share, reuse and represent knowledge in Immunogenetics and Life Sciences

Giudicelli and Lefranc, Bioinformatics (1999)

Concepts of CLASSIFICATION

- 1. The IMGT-ONTOLOGY main concepts of classification
- include 'group', 'subgroup', 'gene', 'allele'.
- have allowed to set up the nomenclature of the immunoglobulin (IG) and T cell receptor (TR) genes (V, D, J, C genes).
- 2. IMGT gene names have been approved by the HUGO Nomenclature Committee (HGNC) in 1999.
- 3. New alleles are validated by the WHO-IUIS/IMGT nomenclature committee and entered in IMGT/GENE-DB.
- IMGT/GENE-DB is the international reference database for IG and TR genes (direct links from NCBI Entrez Gene) and alleles.

Concepts of CLASSIFICATION

- 1. The IMGT-ONTOLOGY main concepts of classification
- include 'group', 'subgroup', 'gene', 'allele'.
- have allowed to set up the nomenclature of the immunoglobulin (IG) and T cell receptor (TR) genes (V, D, J, C genes).
- 2. IMGT gene names have been approved by the HUGO Nomenclature Committee (HGNC) in 1999.
- 3. New alleles are validated by the WHO-IUIS/IMGT nomenclature committee and entered in IMGT/GENE-DB.
- IMGT/GENE-DB is the international reference database for IG and TR genes (direct links from NCBI Entrez Gene) and alleles.

Concepts of DESCRIPTION

- 1. The IMGT-ONTOLOGY concepts of description:
- comprise the standardized IMGT labels and their relations.
- have allowed to describe the IG (or antibody) and TR sequences and structures, whatever the receptor type, the chain type or the species.
- 2. IMGT labels are used in all IMGT® databases and tools for the description of:
- nucleotide and amino acid sequences (IMGT/LIGM-DB...)
- 2D and 3D structures (IMGT/3Dstructure-DB...).
- 3. Sequence Ontology (SO) includes IMGT labels.
- 4. IMGT® databases can be queried using labels (a big 'plus' compared to generalist databases).

Concepts of DESCRIPTION

- 1. The IMGT-ONTOLOGY concepts of description:
- comprise the standardized IMGT labels and their relations.
- have allowed to describe the IG (or antibody) and TR sequences and structures, whatever the receptor type, the chain type or the species.
- 2. IMGT labels are used in all IMGT® databases and tools for the description of:
- nucleotide and amino acid sequences (IMGT/LIGM-DB...)
- 2D and 3D structures (IMGT/3Dstructure-DB...).
- 3. Sequence Ontology (SO) includes IMGT labels.
- 4. IMGT® databases can be queried using labels (a big 'plus' compared to generalist databases).

Concepts of NUMEROTATION


- 1. The IMGT-ONTOLOGY concepts of numerotation include:
- IMGT unique numbering
- IMGT Collier de Perles.
- 2. The concepts bridge the gap between sequences and 3D structures, at the amino acid (and codon) level, for:
- the variable domains (V-DOMAIN and V-LIKE-DOMAIN)
- the constant domains (C-DOMAIN and C-LIKE-DOMAIN).
- 4. The concepts are used for:
- mutations, polymorphisms
- CDR-IMGT lengths
- contact analysis, paratope definition.
- WHO-INN programme requires the CDR-IMGT lengths for antibody.

Concepts of NUMEROTATION

- 1. The IMGT-ONTOLOGY concepts of numerotation include:
- IMGT unique numbering
- IMGT Collier de Perles.
- 2. The concepts bridge the gap between sequences and 3D structures, at the amino acid (and codon) level, for:
- the variable domains (V-DOMAIN)
- the constant domains (C-DOMAIN).
- 4. The concepts are used for:
- Mutations, polymorphisms
- CDR-IMGT lengths
- contact analysis, paratope definition.
- 5. WHO-INN programme requires the CDR-IMGT lengths for antibody.

IMGT/mAb-DB

IMGT/mAb-DB is the clinical antibodies database of IMGT®.

IMGT®, the international ImMunoGeneTics information system®, is the global reference in immunogenetics and immunoinformatics.

IMGT/mAb-DB provides a unique expertised resource:

- on immunoglobulins (IG) or monoclonal antibodies (mAb) with clinical indications
- on fusion proteins for immune applications (FPIA).

Since 2008, amino acid sequences of mAb (INN suffix - mab) and of fusion proteins for immune applications FPIA (INN suffix -cept) from the WHO/INN Programme have been entered in IMGT®.

IMGT/mAb-DB Query page

i

- 1. IMGT/mAb DB ID
- 2. INN and other names
- 3. Characteristics and structure
- 4. Specificity (target name and target species)
- 5. Clinical indication, development status and clinical domain

IMGT/mAb-DB, http://www.imgt.org

Your query: IMGT/mAb-DB INN = alemtuzumab

IMGT/mAb-DB ID	INN (International Nonproprietary Name)	INN Num.	INN Prop. list	INN Rec. list	Common name	Proprietary name
11	alemtuzumab	8005	<u>83</u> (2000)	<u>45</u> (2001)	Campath-1H, LDP-03	CAMPATH® (US) MABCAMPATH® (EU)

A query on a name allows to retrieve the International Nonproprietary Name (INN) and INN lists numbers as provided by the World Health Organization (WHO)/INN Programme, the Common names from literature, and the Proprietary name(s) if the antibody or fusion protein for immune applications (FPIA) is a registered trademark (symbol®)

Your query: IMGT/mAb-DB INN = alemtuzumab

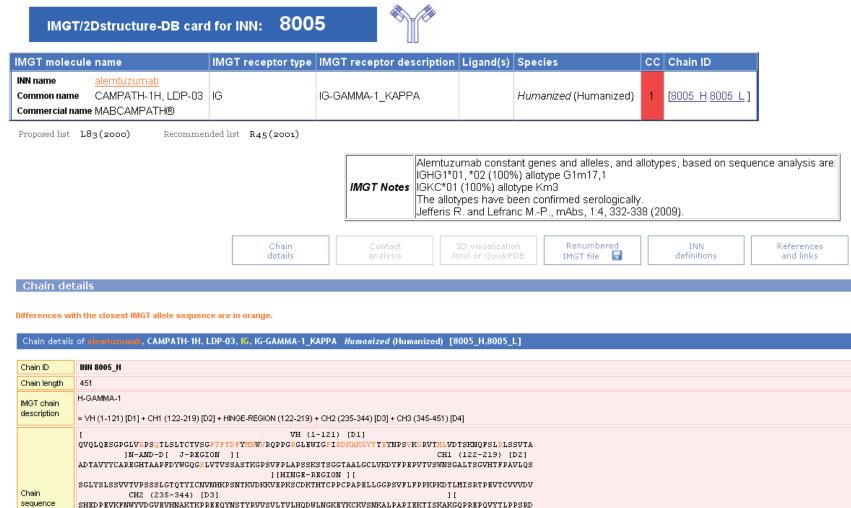
IMGT/mAb-DB species	Isotype and format	IMGT/2Dstructure-DB	IMGT/3Dstructure-DB	Specificity (target) [origin]	Origin clone species	Origin clone name
Humanized	lgG1к	<u>8005</u>	<u>1bey</u> <u>1ce1</u>	CD52 [Homo sapiens]	Rattus norvegicus	YTH34.5HL

For each entry, IMGT/mAb-DB provides the origin species (human, rat, murine, humanized or chimeric), the isotype and format, links to IMGT/2Dstructure-DB (amino acid sequences and IMGT Colliers de Perles), links to IMGT/3Dstructure-DB (3D structures), specificity (target), origin clone species and origin clone name.

Your query: IMGT/mAb-DB INN = alemtuzumab

Company	Clinical indication	Development status	Regulatory agency status and year	Application	Clinical domain	FDA / EMA / NCI number or ATC code
<u>Berlex Inc.</u> (Wayne NJ USA) (US) / <u>Genzyme</u> <u>Corp.</u>	Chronic lymphocytic leukemia (CLL)	Phase M	FDA approval May 2001	Therapeutic	Hematology, Oncology	FDA: (<u>BLA)</u> 103948
(Cambridge MA USA) (EU) / <u>Millennium</u> Pharmaceuticals	Kidney transplant rejection	Phase I/II		Diagnostic	lmmunology	NCI: <u>C1681</u>
Inc. (Cambridge MA USA) (EU/US)	Multiple sclerosis (MS)	Phase I/II		Therapeutic	lmmunology	Drugnum: <u>702</u>

IMGT/mAb-DB also provides information on company, clinical indications (more than 200 in the database), development status, organizations that approved the drug such as Food and Drugs Administration (FDA) or European Medicines Agency (EMA), applications (diagnostic or therapeutic) and clinical domains.


INN mAbs (-mab) and FPIA (-cept) in IMGT/2Dstructure-DB

CH3 (345-451) [D4]

Sequence in FASTA format | Sequence in IMGT format

BLTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG

Ehrenmann, F. et al. Nucleic Acids Res., 38:D301-307 (2010)

An example of INN definition for a mAb

CLASSIFICATION axiom: IMGT gene and allele nomenclature

Immunoglobulin G1-kappa, anti-[Homo sapiens integrin alpha-V (CD51, ITGAV, subunit of alphaV-beta3 or CD51/CD61 or vitronectin receptor or VNR, subunit of alphaV beta5)], Homo sapiens monoclonal antibody gamma1 heavy chain (1-449) [Homo sapiens VH (IGHV3-30*01 (91.80%) -(IGH D)-IGHJ3*02] [8.8.12] (1-19) — IGHG1*01 (120-449)], (222-215')-disulfide with kappa light chain (1'-215') [Homo sapiens V-KAPPA (IGKV3-11*01 (100.00%) -IGKJ3*01) [6.3.10] (1'-108') -IGKC*01 (109'-215')] (228-228":231-231")-bisdisulfide dimer antineoplastic

NUMEROTATION axiom: CDR-IMGT

DEFINITION axiom IMGT labels

From IMGT-ONTOLOGY to INN definition

The INN definition of antibodies provides:

1. For the V domains

- the closest V and J genes and alleles corresponding to the amino acid (AA) sequences
- the percentage of identity of the V regions for the humanized (INN -zumab) and human (INN -umab) antibodies
- AA changes of the FR4-IMGT, by comparison with the closest germline J genes and alleles
- CDR-IMGT lengths

From IMGT-ONTOLOGY to INN definition

The INN definition of antibodies provides:

2. For the C domains

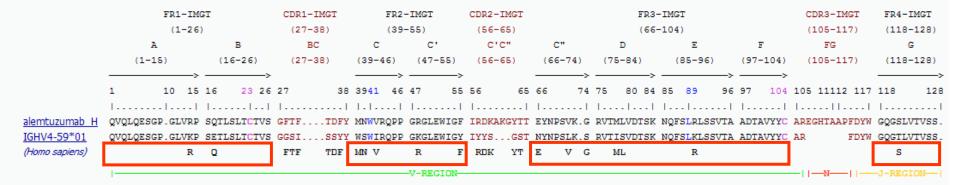
- the closest C genes and alleles corresponding to the amino acid (AA) sequences
- AA changes of the constant region, by comparison with the reference alleles (and expected allotypes)

AA changes are indicated based on the IMGT unique numbering per domain with, between parentheses, positions in the sequence.

This information is obtained with the IMGT/DomainGapAlign tool (http://www.imgt.org).

IMGT/DomainGapAlign

Sequence name: alemtuzumab H


http://www.imgt.org

Move your mouse over the amino acids in bold for the characterization of AA class changes

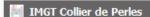
Closest reference gene and allele(s) from the IMGT domain directory

	V gene and allele IGHV4-59*01	Species Homo sapiens	Domain 1	Smith-Waterman Score 494	Identity percentage 73.0	Overlap 100
Ī	J gene and allele	Species	Domain	Smith-Waterman Score	Identity percentage	Overlap
	IGHJ4*01	Homo sapiens	1	94	92.9	14
	IGHJ4*02	Homo sapiens	1	94	92.9	14
	IGHJ4*03	Homo sapiens	1	94	92.9	14

Alignment with the closest genes and alleles from the IMGT domain directory

Region(s) and domain(s) identified in your sequence (corresponding to the closest genes and alleles)

Without gaps Sequence in FASTA format


■ Download

With gaps Sequence in FASTA format

■ Download

EPDKAKGYTTEYNPSVKGRVTMLUDTSKNQFSLRLSSVTAADTAVYYCAR
EGHTAAR PDYWGQGSLVTVSSASTKGPSVFFLAPSSKSTSGGTAALGCLV
KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ
TYICNVNHKPSNTKVDKKVEAPELLGGPSVFLFPPKPKDTLMISRTPEVT
CVVVDUSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH
QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTK
NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL
TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

/QLQESGPGLVRPSQTLSLTCTVSGFTFTDFYMNWVRQPPGRGLEWIG

Acknowledgements

BioSTIC-LR

ACI IMPbio

GIS AGENAE

Plan Pluri-Formation Université Montpellier 2

ANR FLAVORES

ANR BIOSYS

GIS IBISA

Grand Plateau Technique Régional Languedoc-Roussillon GPTR «ImmunoGrid», 6th PCRDT, STREPS IST

and the GDR ACCITH, the national and international institutions and companies that support the IMGT efforts of standardization.

Many thanks to the IMGT® team at Montpellier, France

