IMGT®, the international ImMunoGeneTics information system®: from sequence to molecular interactions

Patrice Duroux

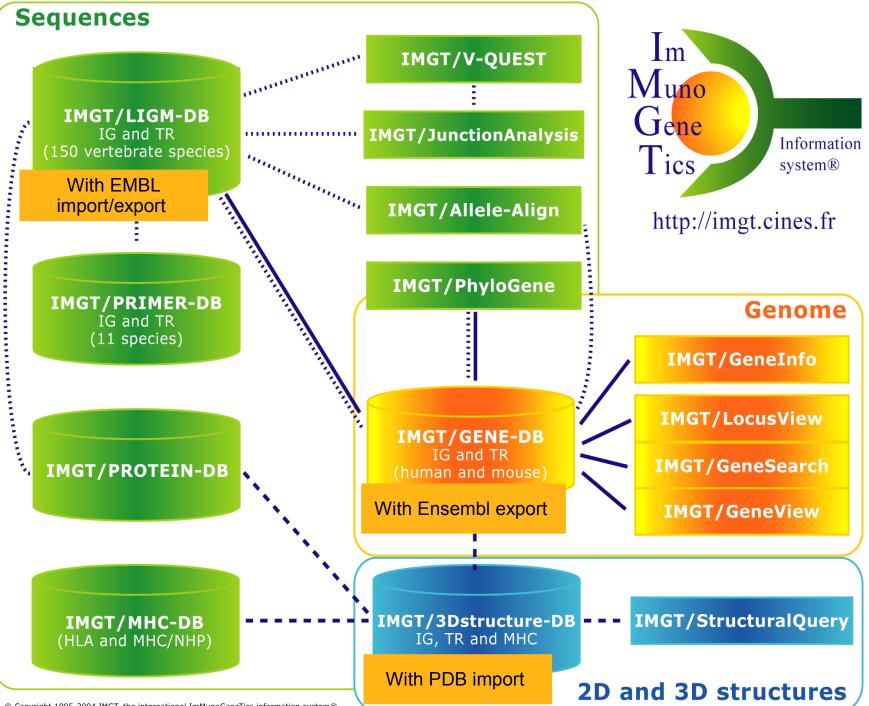
IMGT, IGH, CNRS UPR 1142

4th Indo French Bioinformatics Meeting November 19-21, 2007, Montpellier, France

The international ImMunoGeneTics information system® http://imgt.cines.fr IMGT founder and director: M.-P. Lefranc

Main objectives

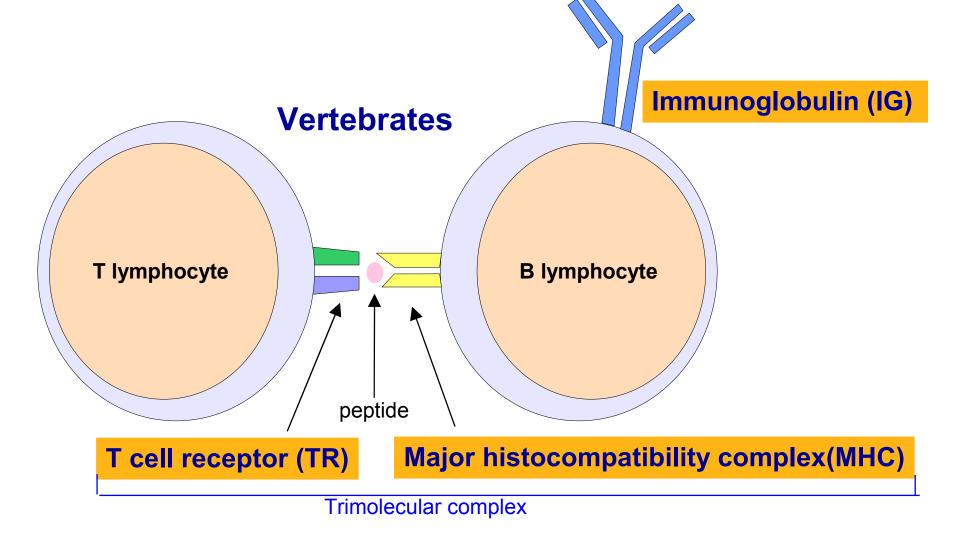
1.Provide data and tools for immunoglobulins (IG) and T cell receptors (TR) sequences

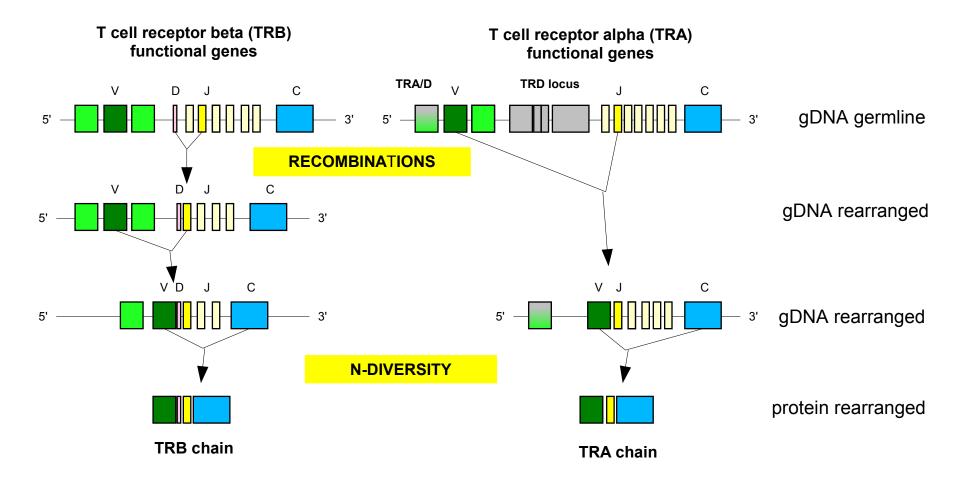

- => data curation and annotation
- => specific bioinformatics development (databases, tools)

2.Ensure quality and consistancy with respect to a shared biological model as a standardize formal background => IMGT-ONTOLOGY

3.Reinforce relevance by integrating knowledge from different approaches

- => genetic,
- => genomic,
- => and more recently structure.


A story started in 1989!

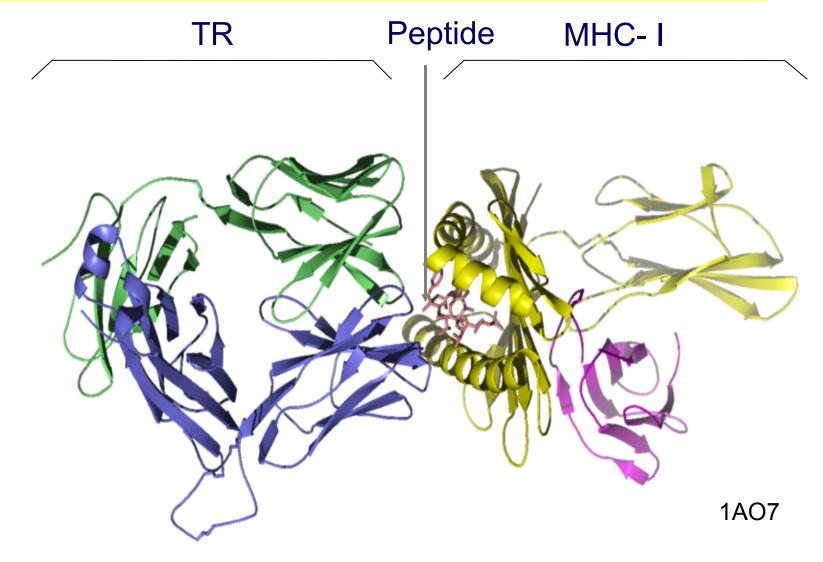

© Copyright 1995-2004 IMGT, the international ImMunoGeneTics information system®

Adaptative immune response

Proteins which specifically recognize foreign antigens:
in a native form for IG
as processed as a peptide and presented by MHC for TR Function of IG and TR is to bind specifically

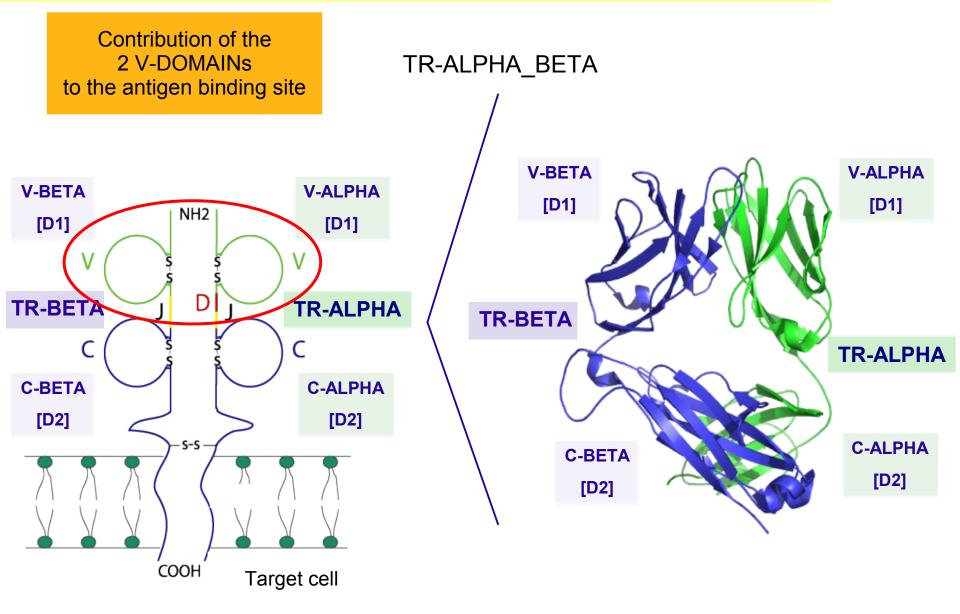
T cell receptor diversity synthesis

IMGT-ONTOLOGY provides:


- identification (molecule type, configuration type, chain type)
- description (prototypes, labels)
- gene and allele nomeclature by their classification (groups, subgroups, gene name, allele number, locus)

Human TR potential repertoire

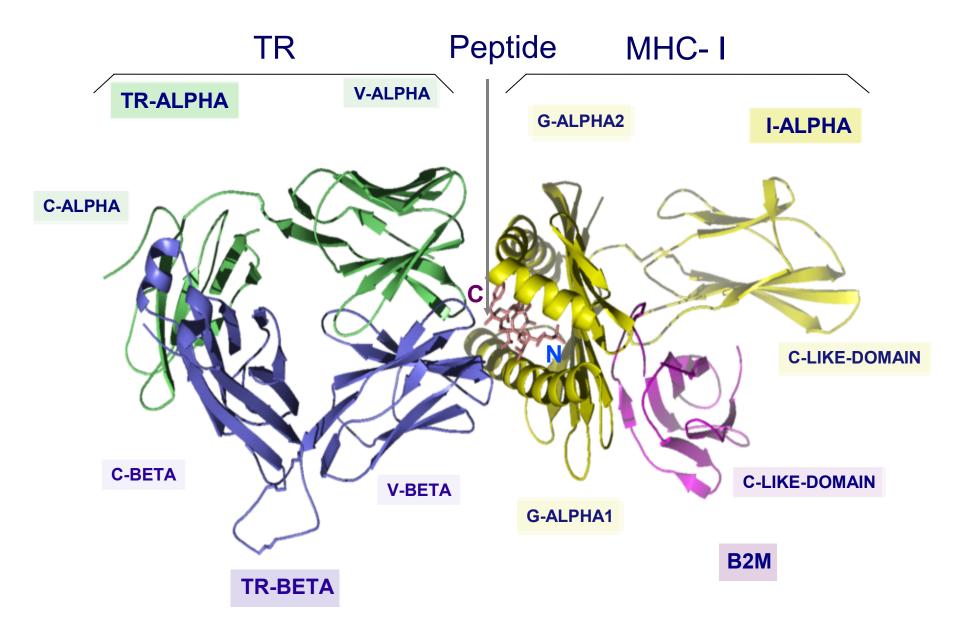
	Sequences		Ge	enes			Alle	les	
		F	ORF	Р	Total	F	ORF	Р	Total
TRA	1511								
TRAV		43(+2)	1	8(+2)	54	101	1	10	112
TRAJ		50	8	3	61	57	8	3	68
TRAC		1			1	1			1
Total					116				181
TRB	5454								
TRBV		40-42(+6)	6(+1)	12-13(+5)	64-67	114	9	23	146
TRBD		2			2	3			3
TRBJ		12(+1)	1(+1)		14	14	2		16
TRBC		2			2	4			4
Total					82-85				169


So potentialy: 2150-2250 TRA chains 960-1248 TRB chains

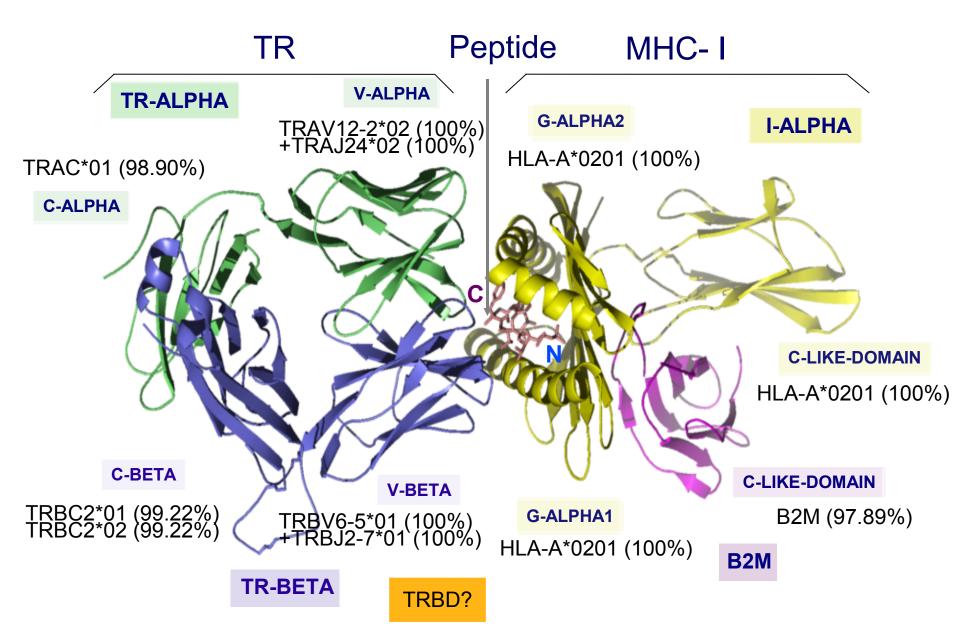
TR/peptide/MHC-I complex

We don't have so much structural data!

TR chains and domains



MHC-I chains and domains


With 8/9/10 amino acid peptide in the G-DOMAIN groove

TR/peptide/MHC-I complex

TR/peptide/MHC-I complex

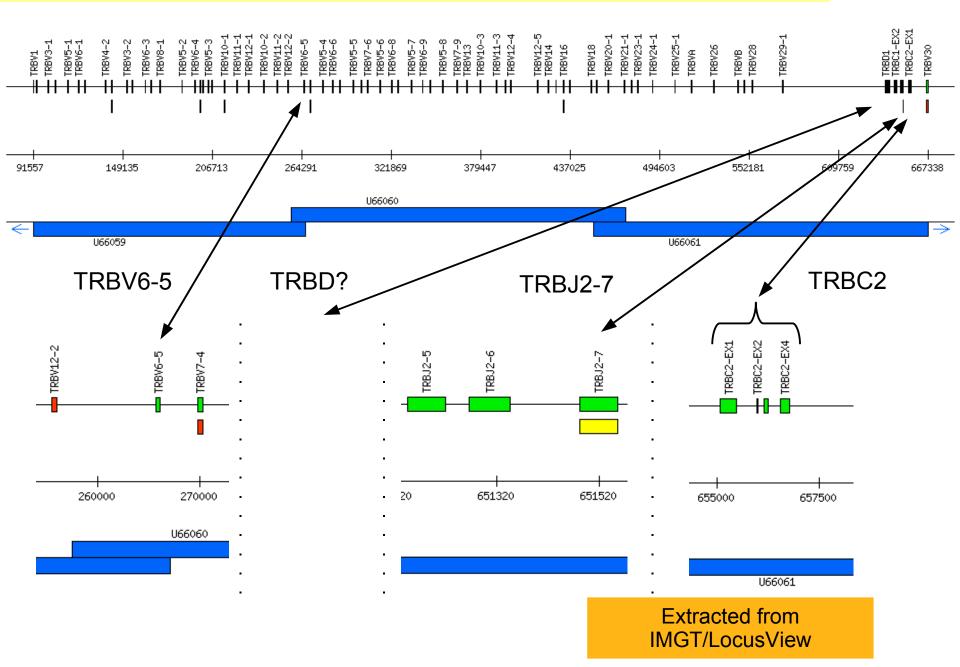
TRAV12-2*02 allele in sequence (M81774)

V-REGION		[67345]
	/translation	QKEVEQNSGPLSVPEGAIASLNCTYSDRGSQSFFWYRQYSGKSPELIMSIYSNGDKEDGRFTAQLNKASQYVSLLIRDSQPSDSATYLCAVYH
		cagaaggaggtggagcagaattctggacccctcagtgttccagagggagccattgcctctctcaactgcacttacagtgaccgaggttcccagtccttcttctggta Q K E V E Q N S G P L S V P E G A I A S L N C T Y S D R G S Q S F F W Y R R R W S R I L D P S V F Q R E P L P L S T A L T V T E V P S P S S G E G G G A E F W T P Q C S R G S H C L S Q L H L Q * P R F P V L L L V Caution: translation of partial subregions can be erroneous.
	/gene	TRAV12-2
	/allele	TRAV12-2*02

Sequence

1 61	atgatgaaat	ccttgagagt	tttactagtg	atcctgtggc	ttcagttgag	r ctgggtttgg
61	agccaa <mark>caga</mark>	aggaggtgga	gcagaattct	ggacccctca	gtgttccaga	i gggagccatt
121	geetetetea	ac tgc actta	cagtgaccga		cottettetg	y g tacagacaa
181	tattctggga	aaagccctga	gttgataatg	tccatatact	ccaatggt <mark>ga</mark>	<mark>ca</mark> aagaagat
241 301 361	ggaaggttta	cagcacaget	caataaagcc	agecagtatg	tttetetget	
301	teccageeea	gtgattcage	cacctacctc	tgtgccgtgt	accactctgg	ttduggargion [1402]
	caactgacct	ttggatctgg	gacacaattg	actgttttac	ctgatateca	galcVcRegion [1345]
421	cctgccgtgt	ac				V-J-C-REGION [67432> V-J-REGION [67402]
						V-REGION [67402]
						FR2-IMGT [163213]
Literat	ure Referenc	es				CONSERVED-TRP [169171]

[1] -1..-1 MEDLINE: 86253078


Yoshikai Y., Kimura N., Toyonaga B., Mak T.W.,

"Sequences and repertoire of human T cell receptor alpha chain variable region genes in mature T lymphocytes";

Journal: J. Exp. Med. 164(1) [1986]

A new forthcoming IMGT/LIGM-DB view

Human TRB locus at 7q34

V-DOMAINs in Human TR $\alpha\beta$ (A6)

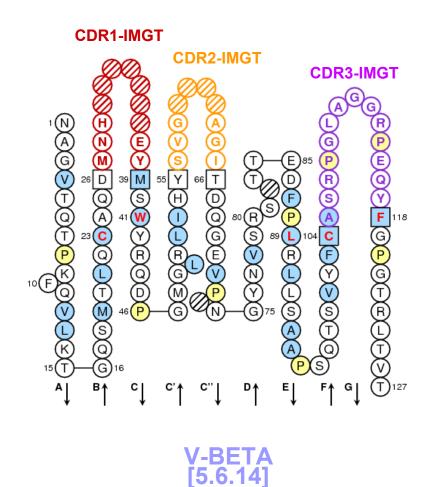
Complementarity determining regions (CDR) in TR-ALPHA (1AO7_D) and TR-BETA-1 (1AO7_E) CDR1-INGT CDR3-IIIGT CDR3-INGT CDR2-INGT **S**66 **T**66 S26 CDR2-INGT CDR1-INGT ¥55 F39 **M**39 **D**26 C104 C104 189 F118 C23 V-BETA [D1] **V-ALPHA** [D1] C

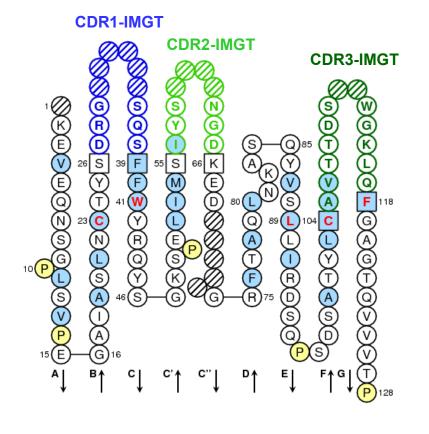
TR/peptide/MHC-I available complexes

	IMGT entry ID	IMGT protein name	IMGT receptor description	Species	Ligand(s)	Experimental technique	Resolution	PDB release date
1	1ao7	A6 HLA-A*0201	MHC-I-ALPHA_B2M	Homo sapiens	Tax peptide 11-19 (Q82235) [Human T lymphotropic virus type 1]	X-ray diffraction	2.6	17-SEP-97
2	1bd2	HLA-A*0201 B7	TR-ALPHA_BETA-1	Homo sapiens	Tax peptide 11-19 (Q82235) [HTLV-1]	X-ray diffraction	2.5	19-AUG-98
3	1fo0	BM3.3 H2-K1b	MHC-I-ALPHA_B2M	Mus musculus	pBM1 peptide [Mouse]	X-ray diffraction	2.50	02-OCT-00
4	1g6r	2C H2-K1b	MHC-I-ALPHA_B2M	Mus musculus	Superantagonist peptide SIYR [Chimeric]	X-ray diffraction	2.80	15-NOV-00
5	1 jtr	H2-K1b 2C	TR-ALPHA_BETA-1	Mus musculus	NADH-ubiquinone oxidoreductase MLRQ subunit peptide 61-68 (Q62425) [Mouse]	X-ray diffraction	2.40	15-MAY-02
6		H2-K1b KB5-C20	FV-ALPHA_BETA	Mus musculus	GTP-binding protein 1 peptide 161-168 pKB1 (008582) [Mouse]	X-ray diffraction	2.71	27-MAR-02
7	11p9	HLA-A*0201 12.2	TR-ALPHA_BETA-1	Homo sapiens Mus musculus	Self peptide P1049 [Human]	X-ray diffraction	2.00	11-NOV-03
8	1mi5	LC13 HLA-B*0801	MHC-FALPHA_B2M	Homo sapiens	EBNA-3A peptide 193-201 (P12977), I9>L [EBV]	X-ray diffraction	2.50	04-FEB-03
9	1mwa	H2-K1b 2C	TR-ALPHA_BETA-1	Mus musculus	NADH-ubiquinone oxidoreductase MLRQ subunit peptide 61-68 (Q62425) [Mouse]	X-ray diffraction	2.40	27-NOV-02
10	1nam	BM3.3 H2-K1b	MHC-I-ALPHA_B2M	Mus musculus	Nucleocapsid protein VSV8 peptide 52-59 (P11212) [Stomatitis]	X-ray diffraction	2.70	11-MAR-03
11	1oga	JM22 HLA-A*0201	MHC-FALPHA_BZM	Homo sapiens	Matrix protein M1 peptide 58-66 (Q66PA1) [Influenza A virus]	X-ray diffraction	1.4	11-JUL-03
12	1 qrn	A6 HLA-A*0201	TR-ALPHA_BETA-1 MHC-I-ALPHA_B2M	Homo sapiens	Tax peptide 11-19 (Q82235), P6>A [HTLV-1]	X-ray diffraction	2.80	08-JUN-01
13	1qse	HLA-A*0201 A6	IR-ALPHA_BETA-1	Homo sapiens	Tax peptide 11-19 (Q82235), V7>R [HTLV-1]	X-ray diffraction	2.80	21-DEC-99
14	1qsf	A6 HLA-A*0201	MHC-I-ALPHA_B2M		Tax peptide 11-19 (Q82235), Y8>A [HTLV-1]	X-ray diffraction	2.80	21-DEC-99
15	1ypz	G8 H2-T22	MHC-I-ALPHA_B2M	Mus musculus Homo sapiens		X-ray diffraction	3.40	12-APR-05
16	2ak4	SB27 HLA-B*3508	MHC-I-ALPHA_B2M	Homo sapiens	BZLF1 trans-activator protein peptide 52-64 (P03206) [EBV]	X-ray diffraction	2.50	11-OCT-05
17	2ckb	H2-K1b 2C	TR-ALPHA_BETA-1	Mus musculus	NADH-ubiquinone oxidoreductase MLRQ subunit peptide 61-68 (Q62425) [Mouse]	X-ray diffraction	3.2	09-SEP-98
18		KK50.4 HLA-E*0101	TR-ALPHA_BETA-1 MHC-I-ALPHA_B2M	Homo sapiens	PEPTIDE FROM CMV GPUL40 [Cytomegalovirus]	X-ray diffraction	2.60	21-MAR-06
19		1G4 mutant (c49c50) HLA-A*0201	MHC-FALPHA_BZM	Homo sapiens	NY-ESO-1 tumor-associated antigen	X-ray diffraction	2.10	25-APR-06
20	2f54	1G4 (AV-wt) HLA-A*0201	MHC-I-ALPHA_B2M	Homo sapiens	NY-ESO-1 tumor-associated antigen	X-ray diffraction	2.70	25-APR-06
21	2nx5	ELS4 HLA-B*3501	TR-ALPHA_BETA-1 MHC-I-ALPHA_B2M	Homo sapiens	EBV PEPTIDE	X-ray diffraction	2.70	27-FEB-07

Human	12
Mouse	7
Human/Mouse	2
Total	21

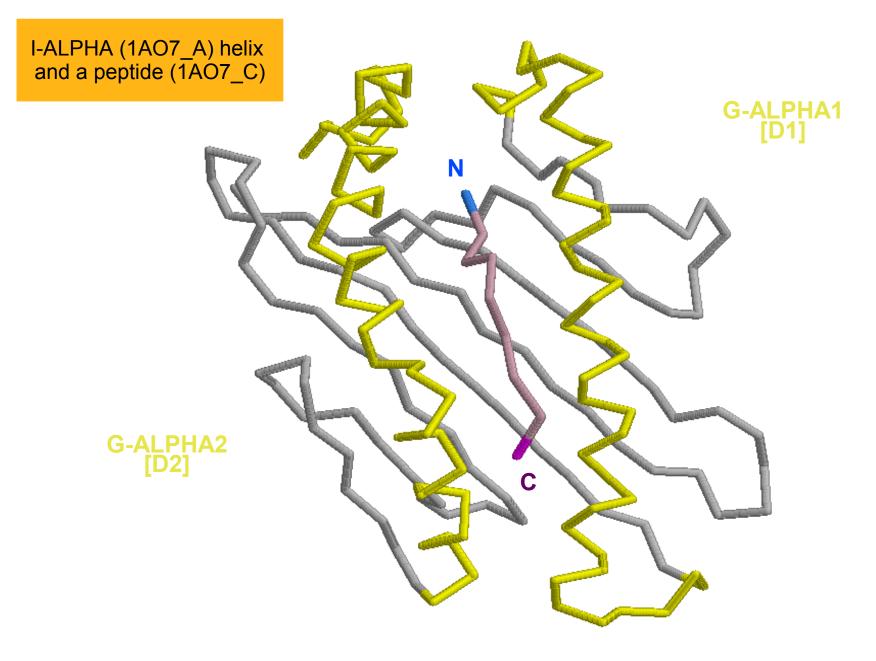
Human 4 2 Mouse TR/peptide/MHC-II Human/Mouse 1 7

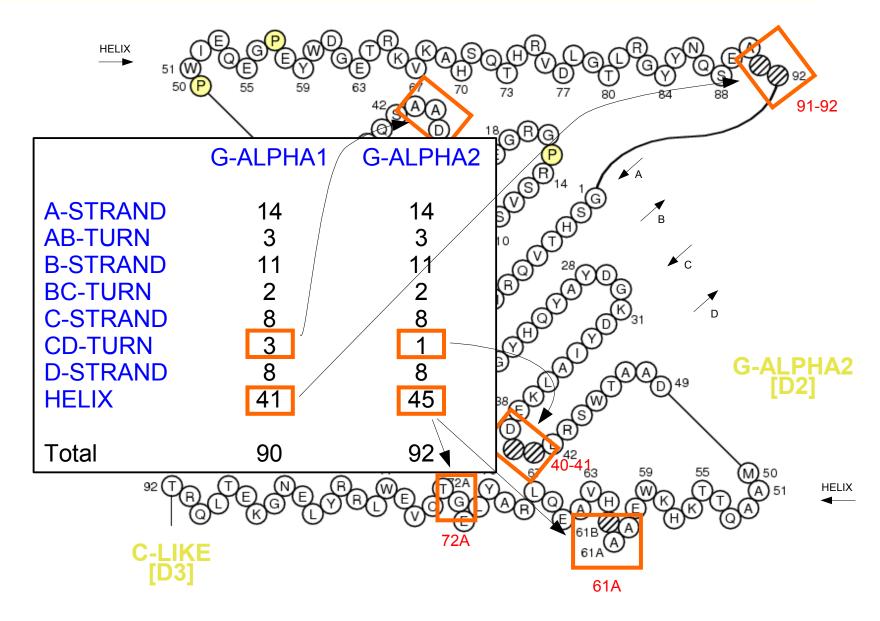

Total


FR and CDR lengths in V-DOMAINs

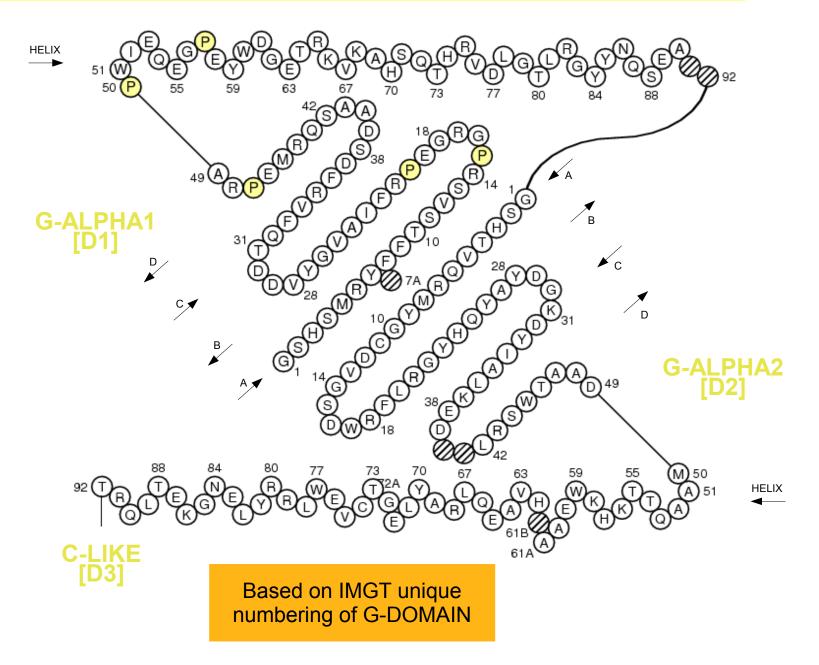
	١	/-BETA	V-ALPHA
A-STRAND		15	14
AB-TURN	(FR1-IMGT)	0	0
B-STRAND -		11	11
BC-TURN	(CDR1-IMGT)	5	6
C-STRAND		8	8
CC'-TURN	(FR2-IMGT)	0	0
C'-STRAND		9	9
C'C"-TURN	(CDR2-IMGT)	6	6
C"-STRAND		8	4
C"D-TURN		0	0
D-STRAND		9	10
DE-TURN	> (FR3-IMGT)	0	0
E-STRAND		11	11
EF-TURN		2	2
F-STRAND >)	7	7
FG-TURN	(CDR3-IMGT)	14	11
G-STRAND		10	11
Total		115	110

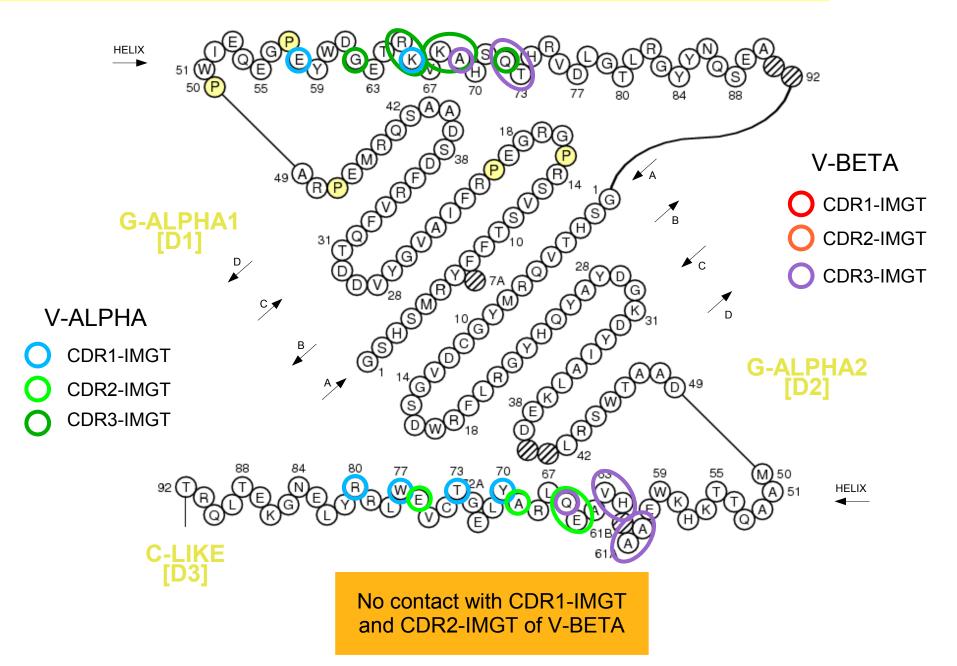
IMGT Colliers de Perles for V-DOMAIN

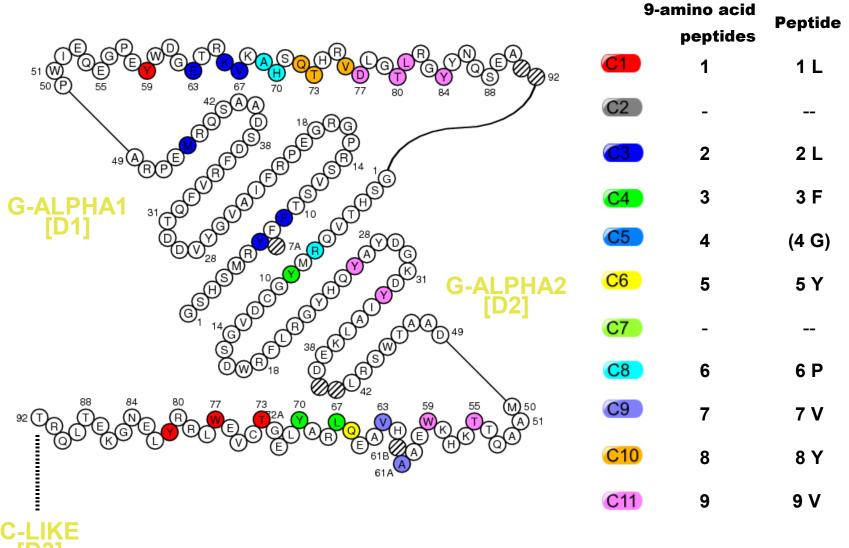

Based on IMGT unique numbering of V-DOMAIN



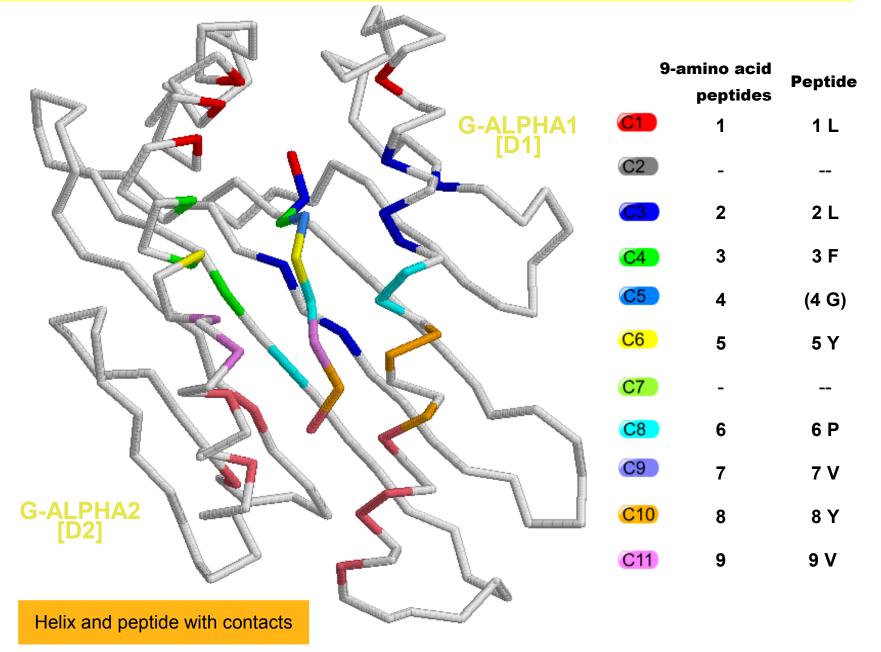
V-ALPHA [6.6.11]


G-DOMAINs in Human MHC-I (HLA-A*0201)


Strand, turn and helix lengths


IMGT Colliers de Perles for G-DOMAIN

HLA-A*0201 regions in contact with A6



HLA-A*0201 contacts with 9 AA peptide

[D3]

HLA-A*0201 contacts with 9 AA peptide

One residue contact analysis

IMGT Residue@Position cards as found in IMGT/3Dstructure-DB

CDR3-IMGT

IMGT Residue@Position card

Residue@Position: 113 - ARG (R) - V-BETA - 1ao7_E

General information:

PDB file numbering	102
IMGT file numbering	113
Residue full name	Arginine
Formula	C6 H15 N4 O2 1+

IMGT LocalStructure@Position

Secondary structure	Coil
Phi (in degrees)	-89.71
Psi (in degrees)	111.56
ASA (in square angstrom)	73.2

	Non Polar	Hydrogen Bond	Polar	Atom contacts	Chain	Domain	idue	Resid	IMGT Num
	З	1	2	5	1ao7_A	G-ALPHA2	A	ALA	<u>61</u>
G-ALPH	18	0	6	24	1ao7_A	G-ALPHA2	A	ALA	<u>61A</u>
G-ALF II	10	0	2	12	1ao7_A	G-ALPHA2	Н	HIS	<u>62</u>
	1	0	1	2	1ao7_A	G-ALPHA2	١Q	GLN	<u>66</u>
Peptide	1	0	0	1	1ao7_C		λΥ	TYR	<u>5</u>
	14	0	1	15	1ao7_E	V-BETA	P	PRO	<u>108</u>
V-BETA	4	0	2	6	1ao7_E	V-BETA	A	ALA	<u>111</u>
V-DETA	19	0	5	24	1ao7_E	V-BETA	G	GLY	<u>112.1</u>
	14	0	З	17	1ao7_E	V-BETA	ΙE	GLU	<u>115</u>

ALPHA2

Human cDNA TRAV12-2 available junctions

IMGT/V-QUEST to look at some specificities

(cut has no D)

					·			
Sequence	V-GENE and allele	Functionality	V Score	V Identity	J-GENE and allele	CDR-IMGT lengths	AA JUNCTION	JUNCTION frame
M27369 M27369 Homo sapiens (cl	TRAV12-2*01	Unproductive (stop codons)	791	80,99% (196/242 nt)	TRAJ52*01	[12,10,14]	CAVKPAGGTSYGKLTF	in frame
S60781 S60781 Homo sapiens T-c	TRAV12-2*01, or TRAV12-2*02	No rearrangement found	636	99,22% (128/129 nt)	-	[12,X,X]	-	-
S82064 S82064 V alpha 2.1-J al	TRAV12-2*01	Productive	1075	100,00% (216/216 nt)	TRAJ39*01	[12,10,12]	CAVNAGNAGNMLTF	in frame
S82066 S82066 V alpha 2.1-J al	TRAV12-2*01	Productive	955	100,00% (192/192 nt)	TRAJ45*01	[12,10,10]	CAVNEGADGLTF	in frame
X92783 HSXPMS2A H.sapiens mRNA	TRAV12-2*01	Productive	1142	99,14% (231/233 nt)	TRAJ57*01	[12,10,15]	CAVNIVGTQGGSEKLVF	in frame
AF020651 AF020651 Homo sapiens	TRAV12-2*01	Productive	1325	99,63% (266/267 nt)	TRAJ29*01	[12,10,12]	CSVMSNSGNTPLVF	in frame
AF327017 AF327017 Homo sapiens	TRAV12-2*01	Productive	1000	100,00% (201/201 nt)	TRAJ43*01	[12,10,11]	CAVDAADNNDMRF	in frame
M17652 HSTCAYN Human T-cell re	TRAV12-2*02	Productive	1245	100,00% (250/250 nt)	TRAJ15*01	[12,10,13]	CAVNIPNQAGTALIF	in frame
M17653 HSTCAYO Human T-cell re	TRAV12-2*02	Productive	1245	100,00% (250/250 nt)	TRAJ15*01	[12,10,10]	CAPKPGGTALIF	in frame
M81774 HSIGTCACA Homo sapiens	TRAV12-2*02	Productive	1330	100,00% (267/267 nt)	TRAJ22*01	[12,10,12]	CAVYHSGSARQLTF	in frame
U40464 HS404641 Human T cell r	TRAV12-2*02, or TRAV12-2*03	Productive	875	100,00% (176/176 nt)	TRAJ41*01	[12,10,13]	CALKGRSNSGYALNF	in frame
X58746 X58746 Human mRNA for T	TRAV12-2*02	No rearrangement found	1330	100,00% (267/267 nt)	-	[12,10,X]	-	-
X92883 HSPHC46A1 H.sapiens mRN	TRAV12-2*02	Productive	1142	99,14% (231/233 nt)	TRAJ34*01	[12,10,11]	CAVPFYNTDKLIF	in frame
AF532854 AF532854 Homo sapiens	TRAV12-2*02	Productive	1161	99,57% (234/235 nt)	TRAJ32*02	[12,10,10]	CADGGATNKLIF	in frame
M13724 HSTCAXH Human T-cell re	TRAV12-2*03	Rearranged sequence (but no junction found)	1210	100,00% (243/243 nt)	TRAJ16*01	[12,10,X]	-	-
M13725 HSTCAXI Human T-cell re	TRAV12-2*03	Productive	1210	100,00% (243/243 nt)	TRAJ18*01	[12,10,14]	CAVNYPRGTTLGRLYF	in frame
X04946 HSTCRA12 Human mRNA for	TRAV12-2*03	Productive	1210	100,00% (243/243 nt)	TRAJ18*01	[12,10,14]	CAVNYPRGTTLGRLYF	in frame

V-REGIONs versus V-ALPHA alignment

but:

1. no protein only sequence input

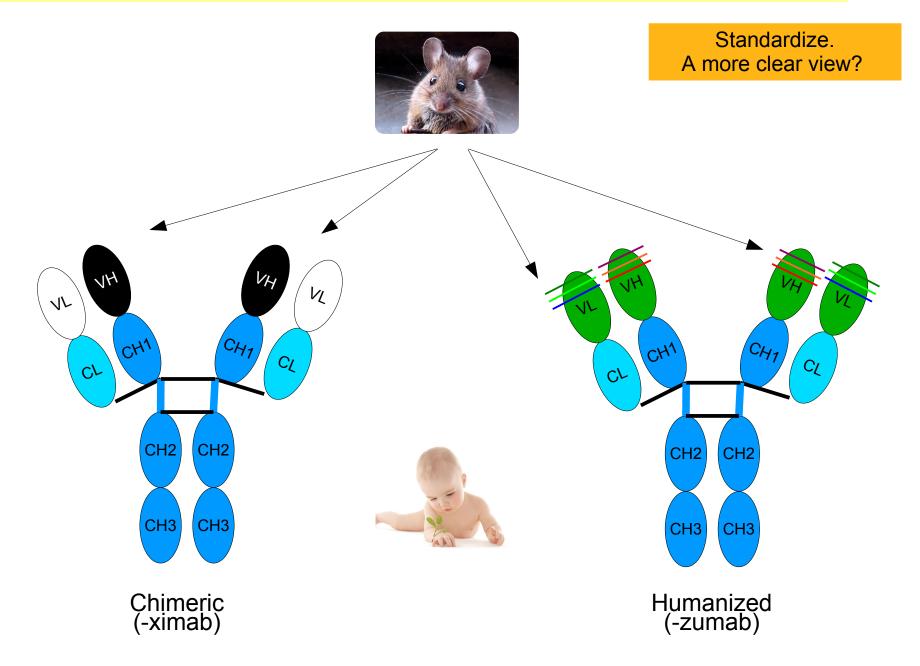
2. no match with the other JUNCTIONs

6. V-REGION protein display (mutations displayed)

		FR1-I (1-2		CDR1-IMGT (27-38)		FR2-IMGT (39-55)	CDR2-IMGT (56-65)			-IMGT -104)			
	1	10	20	30	40	50	60	70	80	ABC	90	100	
					.								
AE000659 TRAV12-2*01	QKEVEQN	ISGPLSVPEG	AIASLNCTYS	DRGSQS	FFWY	RQYSGKSPELIMF	IYSNG	DKEDG	RFTAQ	LNKASQY	VSLLIRDSÇ	QPSDSATYLC	AVN
M13724 HSTCAXH Human T-cell r				V		S							-LRDGQKLLFARGTMLKVDL
M13725 HSTCAXI Human T-cell r				V		S							YPRGTTLGRLYFGRGTQLTVWP
M17652 HSTCAYN Human T-cell r						S							IPNQAGTALIFGKGTTLSVRS
M17653 HSTCAYO Human T-cell r						S							-PKPGGTALIFGKGTTLSVSS
M27369 M27369 Homo sapiens (c		TPQCSR-	SHCLSQLHLQ	*PS									KPAGGTSYGKLTFGQGTILTVHP
M81774 HSIGTCACA Homo sapiens						S							YHSGSARQLTFGSGTQLTVLP
S60781 S60781 Homo sapiens T-				V									
S82064 S82064 V alpha 2.1-J a													AGNAGNMLTFGGGTRLMVKP
S82066 S82066 V alpha 2.1-J a													EGADGLTFGKGTHLIIQP
U40464 HS404641 Human T cell				–		S							 -LKGRSNSGYALNFGKGTSLLVTP
X04946 HSTCRA12 Human mRNA fo				V		S							YPRGTTLGRLYFGRGTQLTVWP
X58746 X58746 Human mRNA for													
X92783 HSXPMS2A H.sapiens mRN													
X92883 HSPHC46A1 H.sapiens mR													
AF020651 AF020651 Homo sapien													
AF327017 AF327017 Homo sapien													
AF532854 AF532854 Homo sapien													

lao7 D|TR-ALPHA .KEVEQNSGPLSVPEGAIASLNCTYS DRGSQS..... FFWYRQYSGKSPELIMS IYSNG.... DKEDG......RFTAQLNKASQYVSLLIRDSQPSDSATYLC AVTTDSWGKLQFGAGTQVVVTP

Why are IMGT Collier de Perles so useful?

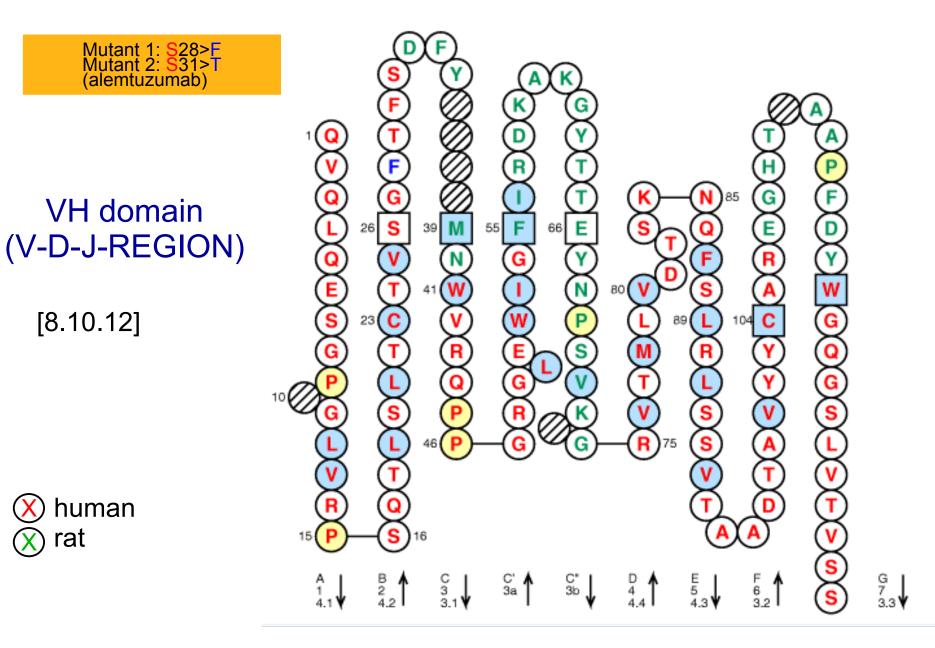

- bridge the gaps between sequences and structures,
- are used whatever the MHC and whatever the species,

MHC-la	MHC-lb	MHC-lla	MHC-IIb	
HLA-A,-B,-C	HLA-E,-F,-G	HLA-DPA,-DQA, - DRA HLA-DPB,-DQB, -DRB	HLA-DMA, -DOA HLA-DMB, -DOB	
H2-D,-K,-L	H2-M,-Q,-T	H2-AA,-EA H2-AB,-EB	H2-DMA,-DOA H2-DMB,-DOB	

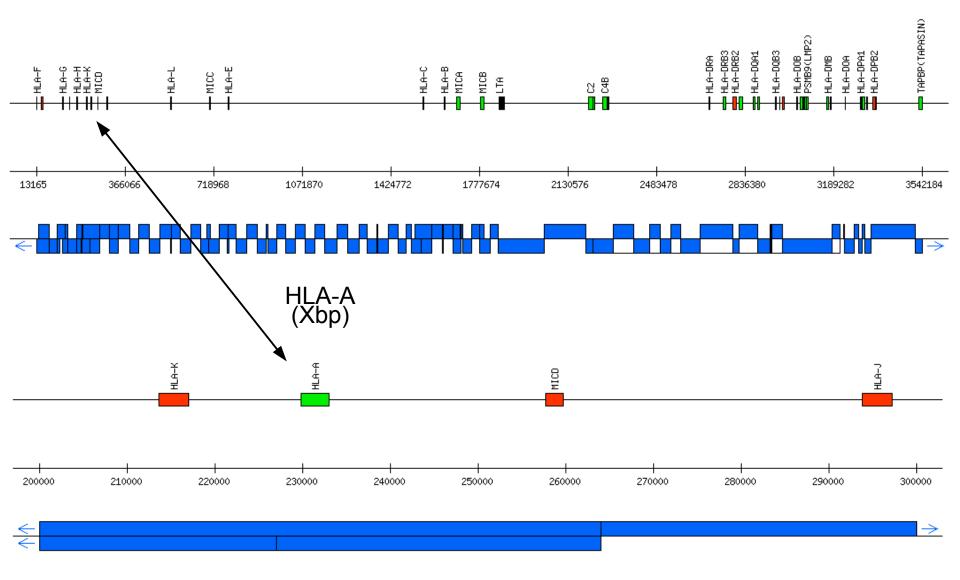
 have been extended to the MHC-I-like proteins (CD1, FCRN, RAET, HFE, MICA, AZGP1,...)

Interestingly, only one additional position **54A** in **G-ALPHA1-LIKE** was needed to extend the IMGT unique numbering for G-DOMAIN to the G-LIKE-DOMAIN

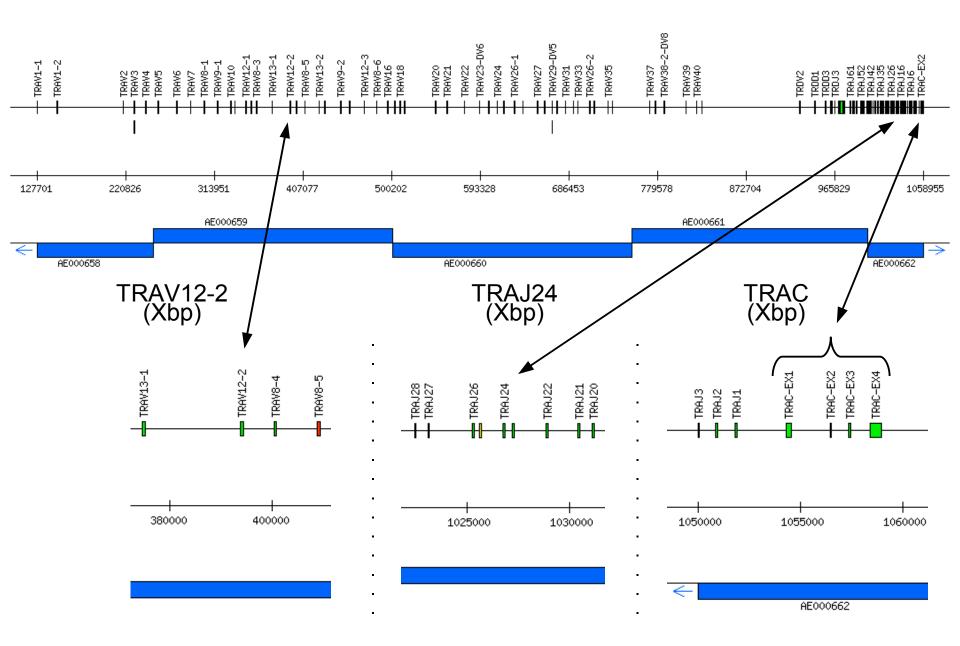
Go towards antibody engineering

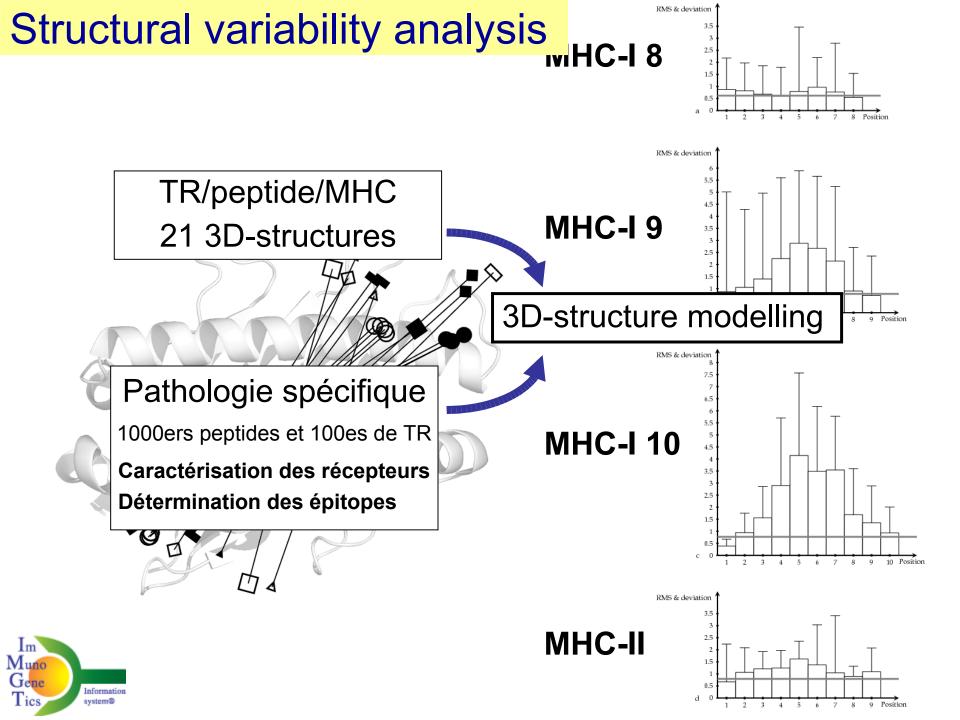


- Improve consistency and quality by considering structural approache and may be others
- Increase by the 3 approaches the data and tools to handle MHC and RPI sequences
- Extend consequently IMGT-ONTOLOGY
- Develop better interoperability between components inside the platform with IMGT-Choreography

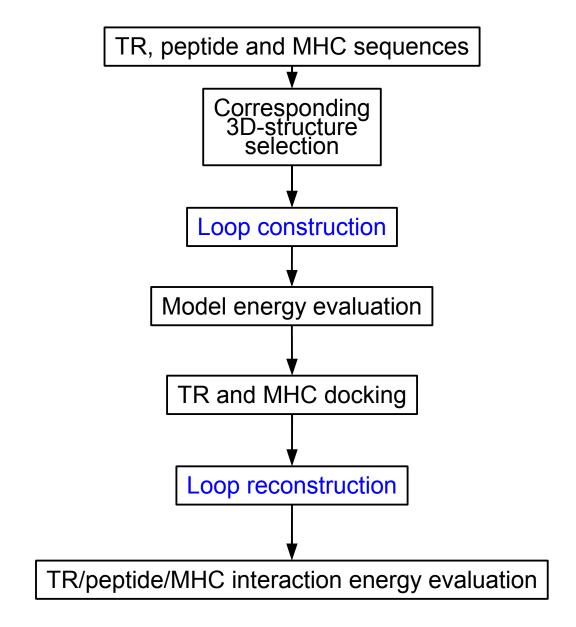


IMGT® team thanks you!

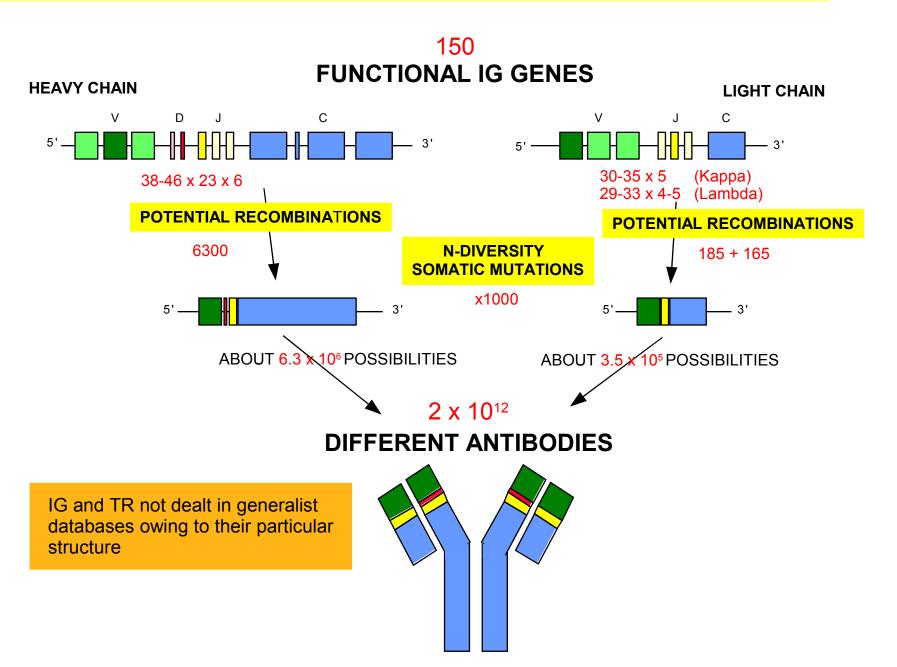

Humanized CAMPATH-1H mutant 1



Human MHC locus at 6p21.3



Human TRA-TRD locus at 14q11.2



TR/peptide/MHC interaction model protocol

IG synthesis: a rich diversity

Different ways to consider:

- synthesis, we know the allele components and try to imagine the possible resulting structure(s)

- analytic, we try to solve the protein history as we know the structure (also in terms of AA sequence) and try to see what may be the possible origin alleles.

But we have to consider model for both to frame the search. IMGT-ONTOLOGY is a way to have a formal construction (in the sens of formal language) "describing" such we can talk about sequence in different approaches () in term of combination of components to see how it fit.

What can be wrong with a structure complex? May be due to 'bad' alleles or synthesis? Chiffres :

Combien de TR et de MHC pour l'homme ?

Quand utilise-t-on la structure exacte vs. les reconstructions ?