# Capra hircus and Ovis aries IGK loci: simultaneous annotation in IMGT®

Viviane Nguefack Ngoune\*, Morgane Bertignac\*, Joumana Jabado-Michaloud, Géraldine Folch, Sofia Kossida, Marie-Paule Lefranc \*Equal contribution

IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire (LIGM),



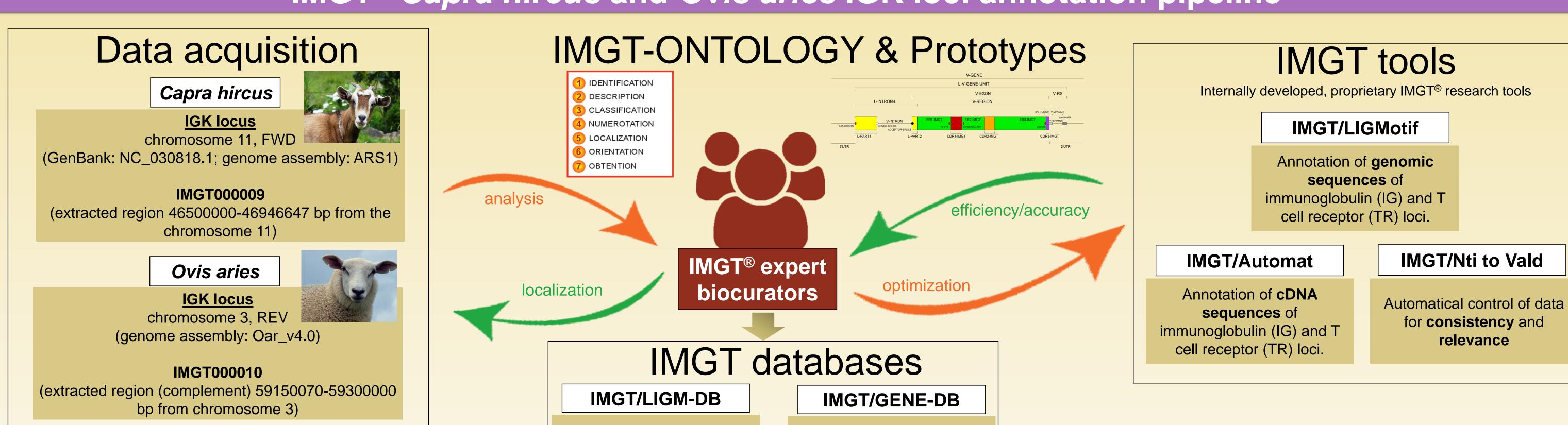
http://www.imgt.org

Information

system®

Institut de Génétique Humaine (IGH), UMR 9002 CNRS-UM, Université de Montpellier (UM), Montpellier (France)

IMGT®, the international ImMunoGeneTics information system®, http://www.imgt.org [1], is the global reference in immunogenetics and immunojenetics [2], founded in 1989 by Marie-Paule Lefranc at Montpellier (Université de Montpellier and CNRS). IMGT® is a high-quality integrated knowledge resource specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH) of human and other vertebrate species, and in the immunoglobulin superfamily (IgSF), MH superfamily (MhSF) and related proteins of the immune system (RPI) of vertebrates and invertebrates.


The genome of the vertebrates with jaws (Gnathostomata), which appeared in the evolution about 450 million years ago, includes the IG, TR and MH genes characteristic of the adaptive immune repertoires [2]. In humans and other mammals, there are seven main loci for IG and TR: three for IG (IGH, IGK and IGL) and TRB, TRD and TRG). IMGT® genomic annotated data are classically displayed in IMGT Repertoire Web Resources (Locus description, Locus representation, Gene tables, Alignments of alleles).

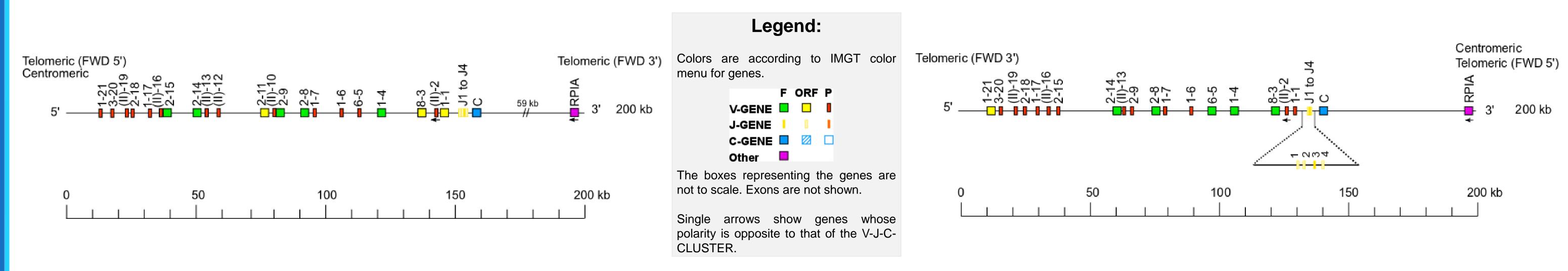
The IG are B cell antigen receptors, expressed at the membrane of the B cells or secreted by plasma cells, and characterized by the huge diversity of their binding specificities. Classically IG proteins comprise two identical heavy chains (H) associated with two identical light chains (L) which belong, in higher vertebrates, to two chain types, kappa (IGK) or lambda (IGL). Several variable (V), diversity (D) (only present in the IGH locus), joining (J) and constant (C) genes compose the IGH, IGK and IGL loci. The IG biosynthesis requires the recombination of these complex mechanisms of V-(D)-J rearrangements and junctional N-diversity and, for the IG, somatic mutations which creates the IG high diversity.

The IG loci have so far been explored in only a limited number of species. Indeed these loci are difficult to annotate owing to their multigene organization of highly similar genes and their biocuration requires a reliable and high quality locus assembly. The genomes of different ruminant species start becoming available, and among them, those of the domestic goat (Capra hircus) [3] and of the sheep (Ovis aries).

[1] Lefranc M.-P. et al., Nucl. Acids Res. 43:D413-422 (2015) PMID: 25378316 [2] Lefranc M.-P. Front. Immunol. 5:22. (2014) PMID: 24600447 [3] Schwartz J.C. et al., Immunogenetics 70(5):317-326 (2018) PMID: 29063126

#### IMGT® Capra hircus and Ovis aries IGK loci annotation pipeline




#### IGK locus representation of Capra hircus and Ovis aries: a unique and common nomenclature

International nomenclature

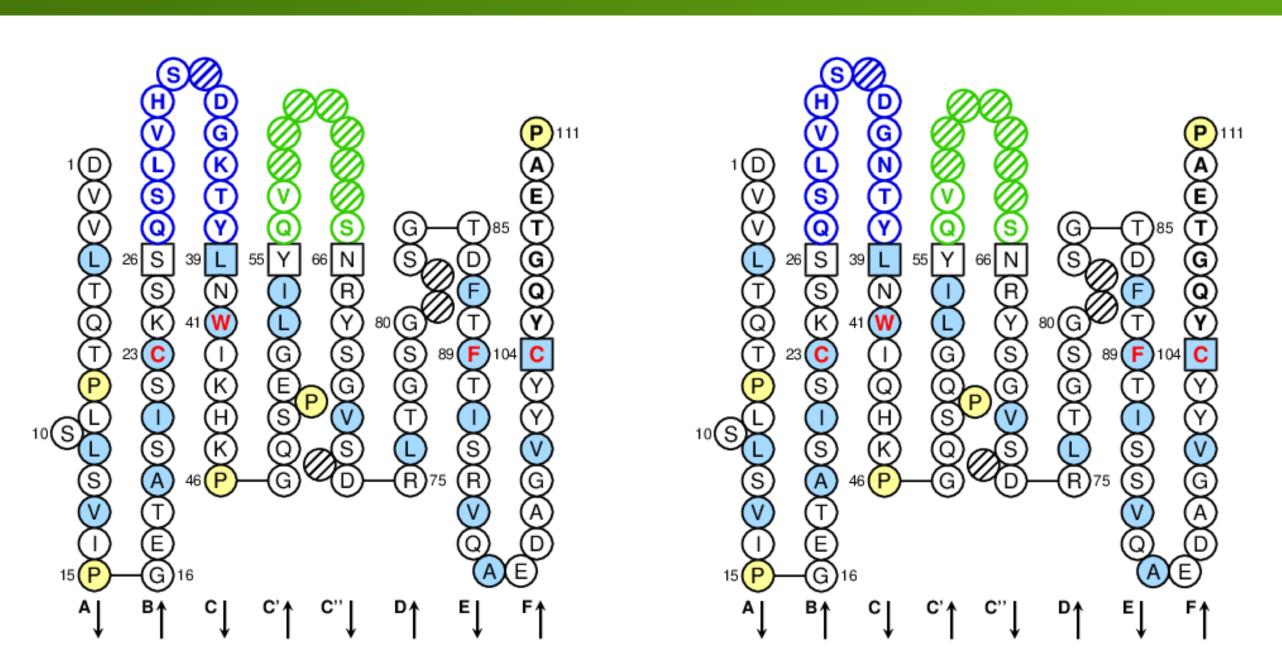
for IG and TR genes

Nucleotide sequences of IG

and TR



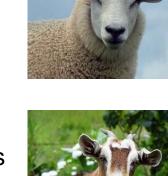
The Capra hircus (goat) IGK locus on chromosome 11 in forward (FWD) orientation spans 160 kilobases and consists of 21 IGKV genes (5 genes are functional, 3 genes are ORF and 13 genes are pseudogenes), 4 IGKJ genes (1 gene is functional and 3 genes are ORF) and 1 IGKC gene (functional).


The Ovis aries (sheep) IGK locus on chromosome 3 in reverse (REV) orientation spans 150 kilobases and consists of 18 IGKV genes (5 genes are functional, 1 gene is ORF and 12 genes are pseudogenes), 4 IGKJ genes (1 gene is functional and 3 genes are ORF) and 1 IGKC gene (functional).

### Protein display of IGKV genes: Capra hircus & Ovis aries

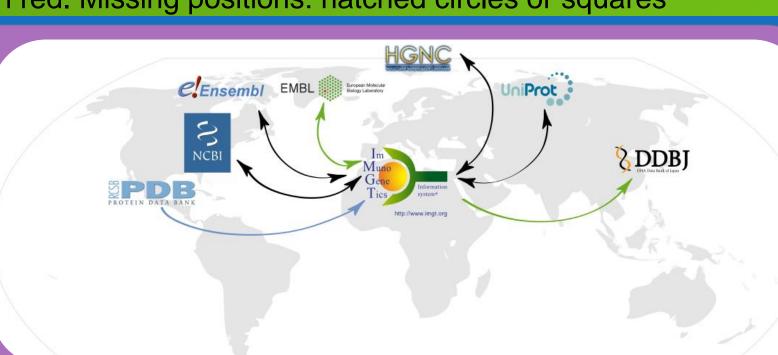
|                  |             |               |                          |                    |               | FR1-IMGT<br>(1-26) |              | CDR1-IMGT FR2-1<br>(27-38) (39-5 |              |              |              |           |          | 3-IMGT<br>5-104) |                | CDR3-IMGT<br>(105-117) |
|------------------|-------------|---------------|--------------------------|--------------------|---------------|--------------------|--------------|----------------------------------|--------------|--------------|--------------|-----------|----------|------------------|----------------|------------------------|
| Species          | Gene        | Allele        | AccNum                   | Domain label       | Functionality | A                  | В            | BC                               | C            | C'           | C'C"         | C"        | D        | E                | F              | FG                     |
|                  |             |               |                          |                    |               | (1-15)             | (16-26)      | (27-38)                          | (39-46)      | (47-55)      | (56-65)      | (66-74)   | (75-84)  | (85-96)          | (97-104        | )                      |
|                  |             |               |                          |                    |               | 1 10 15            | 16 23 26     | 27 39                            | 3941 46      | /7 55        | 56 65        | 66 74     | 75 84    | 85 <b>89</b>     | ><br>96 97 104 | ><br>4 105 11112       |
|                  |             |               |                          |                    |               | [                  |              |                                  |              |              |              |           |          |                  |                |                        |
| Caphir           | IGKV1-1     | IGKV1-1*01    | IMGT000009               | V-KAPPA            | ORF           | DIQVTQSPSSLSACL (  |              | -                                |              |              |              |           |          |                  |                |                        |
| Oviari           | IGKV1-1     | IGKV1-1*01    | IMGT000010               | V-KAPPA            | Р             | DIQVTQSPSSLSASL    | ADKVSITCQAS  | QNTDTK                           | LAWYQQKP     | RKAPKLLIY    | AVS          | RSPSWFP.S | QFSGSGFG | IDFTLTISSL       | .KA DDIAAYY    | C QQDHGLP              |
| Caphir           |             | IGKV1-6*01    | <u>IMGT000009</u>        | V-KAPPA            | Р             | DIQVT*SPSVLSASL (  | -            | -                                |              | •            |              | -         |          |                  |                | _                      |
| Oviari           | IGKV1-6     | IGKV1-6*01    | IMGT000010               | V-KAPPA            | Р             | DIQMT*SPSVLSASL (  | 3DRVSITCQAS  | QSVSKW                           | LAWYQQKP     | GQAPKLLTY    | VAS          | NLQTGVS.S | RFGGSGSG | TDFTVAISSL       | .EA EDVATYY    | C LQYDSTP              |
| Caphir           |             | IGKV1-7*01    |                          | V-KAPPA            | P             | GLQMTQSPS.LSASL (  |              |                                  |              |              |              |           |          |                  |                | _                      |
| Oviari           | IGKV1-/     | IGKV1-/*01    | <u>IMGT000010</u>        | V-KAPPA            | Р             | DLQMTQSPS.LSASL (  | NRVSIICWAS   | QSISKW                           | LDRYQQKS     | G*VPKLLVY    | AAS          | SLGTGAP.S | RFSDSGSG | ADFTLTTSSL       | .EA EDAATYYI   | W LQTDSTP              |
| Caphir           |             | IGKV2-8*01    |                          | V-KAPPA            | F             | DVVLTQTPLSLSVIP (  | GETASISCKSS  | QSLVHS.DGKTY                     | LNWIKHKP     | GQSPEGLIY    | QVS          | NRYSGVS.D | RLTGSGSG | TDFTFTISRV       | QA EDAGVYY     | C YQGTEAP              |
| Oviari           | IGKV2-8     | IGKV2-8*01    | IMGT000010               | V-KAPPA            | F             | DVVLTQTPLSLSVIP (  | ETASISCKSS   | QSLVHS.DGNTY                     | LNWIQHKP     | GQSPQGLIY    | QVS          | NRYSGVS.D | RLTGSGSG | TDFTFTISSV       | QA EDAGVYY     | C YQGTEAP              |
| Caphir           |             |               |                          | V-KAPPA            | Ę             | AMMQTQTLRSLSVIH (  |              |                                  | -            | 100          |              |           |          |                  |                |                        |
| Oviari           |             |               |                          | V-KAPPA            | P _           | AITQTQTLRSLSVIP (  |              |                                  | _            | <del>-</del> |              |           |          |                  |                |                        |
| Caphir           |             |               | IMGT000009               | V-KAPPA<br>V-KAPPA | F             | DVVLTQTPLSLSVIP (  |              | -                                | -            | •            |              |           |          |                  | •              | -                      |
| Oviari           |             |               |                          |                    | F             | DVVLTQTPLSLSVTP (  |              | _                                | <del>-</del> |              | <del>_</del> |           |          |                  | _              |                        |
| Caphir<br>Oviari |             |               | IMGT000009<br>IMGT000010 | V-KAPPA<br>V-KAPPA | P             | AIVLTQTPRSLSVIP (  |              | -                                | •            |              |              |           |          |                  |                |                        |
|                  |             |               |                          |                    | •             | -                  |              |                                  | _            |              |              |           |          |                  |                |                        |
| Caphir           |             |               |                          | V-KAPPA            | ORF<br>F      | EAVLYQTPAYIAVPL (  |              | •                                |              |              |              |           | •        | •                |                |                        |
| Oviari           | IONVŏ-3     | 101/10-2-01   | IMGT000010               | V-NAFFA            | Г             | EAVLYQTPAYIAVPL (  | IESTST LCKAN | Λ21                              | LOWINGKY     | GUAPMILIY    | DAD          | NKLNUVP.E | KLIMIÓ20 | I IELALITZŐA     | CA DUAAMYY(    | L QUSTVLP              |
|                  | _           |               |                          |                    |               |                    |              |                                  |              |              |              |           |          |                  |                |                        |
| Capi             | ıır: Capra  | hircus (goat) |                          |                    |               |                    |              |                                  |              |              |              |           |          |                  |                |                        |
| Ovia             | ri: Ovis ai | ries (sheep)  |                          |                    |               |                    |              |                                  |              |              |              |           |          |                  |                |                        |

Protein display of different parts of the V-REGION shows for 3 selected subgroup, the strong similarity of amino acids of both species, designated in this study as Caphir and Oviari (using the 6-letter code IMGT taxon abbreviation). Three IGKV1 genes, Caphir IGKV1-1, IGKV1-6, and IGKV1-7 and Oviari IGKV1-1, IGKV1-6 and IGKV1-7, have the same [6.3.7] CDR-IMGT lengths. The IGKV2-8, IGKV2-9, IGKV2-14 and IGKV2-15 genes in both species have also the same [11.3.7] CDR-IMGT lengths.


#### IMGT Collier de Perles: Oviari IGKV2-8 Caphir IGKV2-8



Hydrophobic amino acids and tryptophan (W): blue. Proline (P): yellow. The CDR-IMGT are limited by amino acids shown in squares, which belong to the neighbouring FR-IMGT. Arrows indicate the direction of the beta sheets and their different designations in 3D structures. CDR1-IMGT (blue), CDR2-IMGT (green), CDR3-IMGT (greenblue). C at position 23 (1st-CYS), W at position 41 (CONSERVED-TRP), letter of the conserved hydrophobic amino acid at position 89, and C at position 104 (2nd-CYS) are in red. Missing positions: hatched circles or squares


## Interest of this study





Beyond research, goat and sheep small ruminant species have a highly economic interest because they contribute significantly to the nutrition and cash income for many farmers in developing world such as Africa and South Asia. Unfortunately both species are regularly affected by different strains of Morbillivirus, which are extremely contagious and lethal. The characterization of the adaptive immune responses in these species would be beneficial for vaccine and immune reagent development.

**External** links















