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Abstract
Background: Nucleotides are trimmed from the ends of variable (V), diversity (D) and joining (J) genes
during immunoglobulin (IG) and T cell receptor (TR) rearrangements in B cells and T cells of the immune
system. This trimming is followed by addition of nucleotides at random, forming the N regions (N for
nucleotides) of the V-J and V-D-J junctions. These processes are crucial for creating diversity in the
immune response since the number of trimmed nucleotides and the number of added nucleotides vary in
each B or T cell. IMGT® sequence analysis tools, IMGT/V-QUEST and IMGT/JunctionAnalysis, are able to
provide detailed and accurate analysis of the final observed junction nucleotide sequences (tool "output").
However, as trimmed nucleotides can potentially be replaced by identical N region nucleotides during the
process, the observed "output" represents a biased estimate of the "true trimming process."

Results: A probabilistic approach based on an analysis of the standardized tool "output" is proposed to
infer the probability distribution of the "true trimmming process" and to provide plausible biological
hypotheses explaining this process. We collated a benchmark dataset of TR alpha (TRA) and TR gamma
(TRG) V-J rearranged sequences and junctions analysed with IMGT/V-QUEST and IMGT/JunctionAnalysis,
the nucleotide sequence analysis tools from IMGT®, the international ImMunoGeneTics information
system®, http://imgt.cines.fr. The standardized description of the tool output is based on the IMGT-
ONTOLOGY axioms and concepts. We propose a simple first-order model that attempts to transform
the observed "output" probability distribution into an estimate closer to the "true trimming process"
probability distribution. We use this estimate to test the hypothesis that Poisson processes are involved
in trimming. This hypothesis was not rejected at standard confidence levels for three of the four trimming
processes: TRAV, TRAJ and TRGV.

Conclusion: By using trimming of rearranged TR genes as a benchmark, we show that a probabilistic
approach, applied to IMGT® standardized tool "outputs" opens the way to plausible hypotheses on the
events involved in the "true trimming process" and eventually to an exact quantification of trimming itself.
With increasing high-throughput of standardized immunogenetics data, similar probabilistic approaches
will improve understanding of processes so far only characterized by the "output" of standardized tools.
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Background
The diversity of the chains of immunoglobulins (IG) or
antibodies and T cell receptors (TR) depends on several
mechanisms [1-10]: first, combinatorial diversity, which
is a consequence of the number of variable (V), diversity
(D) and joining (J) genes in the IG and TR loci [9,10], sec-
ond, exonuclease trimming of V, D and J nucleotides and
third, addition at random of nucleotides at the V-J and V-
D-J junction (N region diversity).

These processes together create a huge diversity in V-J and
V-D-J junctions as exemplified by the rearranged IG and
TR sequences from IMGT/LIGM-DB [11]. In addition,
rearranged V-J and V-D-J genes from IG (but not those
from TR) are specifically submitted to the mechanism of
somatic hypermutations [9] (IMGT Education, Tutorials,
http://imgt.cines.fr). The number of different antigen
receptors (IG and TR) per individual is estimated to be 2
× 1012 in humans and the only limiting factor seems to be
the number of B cells (for the IG) and T cells (for the TR)
which is genetically programmed in a given species.

Trimming by exonuclease occurs at the ends of the 3'V-
REGION and 5'J-REGION [12] (IMGT labels from the
DESCRIPTION axiom of IMGT-ONTOLOGY are in capital
letters [13,14]) and at both ends of the D-REGION,
present in the IG heavy (IGH), TR beta (TRB) and TR delta
(TRD) loci [9,10]. Little is known about the mechanisms
that regulate trimming of V, D and J genes during V-J and
V-D-J rearrangement. Given the importance of trimming
in the creation of the vast diversity of V-J and V-D-J junc-
tions, it is of great interest to better understand this proc-
ess.

Based on the IMGT-ONTOLOGY axioms and concepts of
classification (IMGT gene names) [9,10,15,16], descrip-
tion (IMGT labels) [17,18] and numerotation (IMGT con-
cepts for numbering, in particular, IMGT unique
numbering for V, C and G domains) [19-21], on-line tools
have been developed by IMGT®, the international ImMu-
noGeneTics information system®, http://imgt.cines.fr[22],
for the standardized analysis of immunogenetics data.

Among them, IMGT/V-QUEST is the highly customized
and integrated IMGT system for the standardized analysis
of rearranged IG and TR sequences [23,24]. IMGT/V-
QUEST identifies the V, D and J genes in rearranged V-J
and V-D-J sequences. IMGT/V-QUEST integrates IMGT/
JunctionAnalysis [25] (noted IMGT/V-QUEST+JCTA here-
after) to provide a detailed analysis of the observed V-J
and V-D-J junctions. As bioinformatics tools become
higher-throughput (IMGT/V-QUEST+JCTA can process
batches of 50 sequences at present and proposes a "Syn-
thesis view" of the results [24]), data representing varia-
bles such as number of trimmed nucleotides and N-REGION

length (number of added nucleotides) can be obtained
[12]. However, these numbers represent what is observed
in the final "output" but do not necessarily represent the
extent of the "true" trimming or nucleotide addition proc-
esses. Indeed, randomly trimmed nucleotides can be
replaced by identical randomly added N region nucle-
otides. As a consequence, the number of trimmed V or J
nucleotides (represented by the dots in Figure 1) will
sometimes be underestimated.

There is therefore a need to quantify this bias if we want
to investigate the underlying processes. The goal of the
present article is to explore this possibility using TRA and
TRG trimming processes, where only V and J genes are
involved [10].

Our strategy is the following: given an IMGT/V-
QUEST+JCTA standardized output, we aim to calculate
the probabilities of all possible trimming events that are
consistent with this output. Then, using many such out-
puts, we aim to probabilistically transform the set of tool
"output" data into a representation of the "true trimming
process" (i.e., the amount of trimming that actually
occurred). This probabilistic framework appears naturally
by first taking the "output" dataset and simply calculating
the empirical probability that the tool "output" shows
that 0,1,2... nucleotides were trimmed. Then, understand-
ing how the tool works, we aim to "correct" these empiri-
cal probabilities with respect to the tool's biases. A
comprehensive introduction to probability distributions
(empirical, true) can be found in [26,27] and a simple
introduction to Bernoulli and Poisson distributions is
included in Supplementary Data [see Additional file 1].

A first-order model is presented in Results, along with sta-
tistical tests on the transformed probability distributions.
A proof of the first-order model and a proposed second-
order model (also with proof) can be found in Supple-
mentary Data [see Additional file 1].

IMGT® junction analysis ''output'' from IMGT/V-QUEST+JCTAFigure 1
IMGT® junction analysis ''output'' from IMGT/V-
QUEST+JCTA. A TRA or TRG ''output'' showing the 
observed post-trimming 3'V-REGION, N region and post-
trimming 3'V-REGION. The dots indicate nucleotides 
trimmed from the 3'V-REGION and 5'J-REGION by compar-
ison with the closest germline V and J genes and alleles iden-
tified by IMGT/V-QUEST [23,24] and analysed by IMGT/
JunctionAnalysis [25].
Page 2 of 7
(page number not for citation purposes)

http://imgt.cines.fr
http://imgt.cines.fr


BMC Bioinformatics 2008, 9:408 http://www.biomedcentral.com/1471-2105/9/408
Results and discussion
A first-order model
Figures 2 and 3 show histograms of the number of
trimmed TRAV, TRAJ, TRGV and TRGJ nucleotides
obtained from 212 TRAV-TRAJ and 220 TRGV-TRGJ junc-
tion sequences analysed by IMGT/V-QUEST+JCTA and
whose results were agreed upon by experts.

As potentially more nucleotides are trimmed in the "true
process" than appear to have been trimmed according to
the tool "output," we would like to transform the "out-
put" data into "true process" data.

A factor also to take into consideration are the quantities
of data at zero (except for TRGJ), which do not match the
relatively smooth form of the tool "output" data distribu-
tions (see Figures 2 and 3). This may be evidence of a two-
step process: either the trimming process is activated, or
not. If activated, it follows some as yet unknown law. If
not, no trimming occurs. Obviously, if the unknown law
also takes the value zero, the fraction of data that takes the
value zero would then have two sources (either the first
process is not activated, or is activated and the second
process gives the value zero). Thankfully, as will be shown
under the following first-order model, probabilistically
transforming the "output" distribution towards the "true
process" distribution (under the hypotheses of the model)
does not cause further complications. Indeed, the trans-
formed masses (i.e., fractions of the total number of data
found at each possible data value) above zero do not
depend on the original fraction at zero. This means that
performing maximum likelihood estimation of the
parameters of a two-step process is well-defined on the
transformed data.

Recovering an estimation of the true process probability distribution
Here we introduce a mathematical result that allows us to
recover an estimation of the true process probability dis-
tribution of the number of trimmed V nucleotides. This
result is almost (but not entirely) valid for the true process
probability distribution of the number of trimmed J
nucleotides. The potential problem is that IMGT/V-
QUEST+JCTA selects the J gene after the V gene (see Meth-
ods and [25] for more details), thus there is a non-zero
chance that 5'J-REGION nucleotides will accidentally be
included in the V gene prediction when there has been no
N region nucleotide addition. After reanalyzing the data,
we found that in the TRAV-TRAJ dataset, this happened at
most 3 times and thus was rare enough to be ignored.
However, for the TRGV-TRGJ data, this potentially hap-
pened quite often, so estimated probability distribution
results for the TRGJ trimming process must be used with
caution.

Let P {B = k} mean 'the probability that k 3'V-REGION
nucleotides are trimmed under the (unknown) true trim-
ming process distribution fB'. We want to estimate this for
k ≥ 0. Let P {F = i} mean 'the probability that i nucleotides
appear k to have been trimmed.' That is, the random vari-
able F represents the 3'V-REGION trimming distribution
of the tool "output." We do not know the distribution fF
of F exactly, but through our datasets we have an empiri-
cal estimate of it.

The goal is to use this empirical estimate of fF to estimate
fB. To begin, Theorem 1 [see Additional file 1] shows that
under some simple hypotheses (the 'first-order' model),
there is an explicit link between the law of the observed
3'V-REGION tool "output" trimming distribution and the

TRA trimming distribution for the IMGT/V-QUEST+JCTA output datasetsFigure 2
TRA trimming distribution for the IMGT/V-
QUEST+JCTA output datasets. Histograms of the 
number of trimmed V nucleotides and number of trimmed J 
nucleotides for the set of 212 human rearranged TRAV-TRAJ 
junction sequences.
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TRG trimming distribution for the IMGT/V-QUEST+JCTA output datasetsFigure 3
TRG trimming distribution for the IMGT/V-
QUEST+JCTA output datasets. Histograms of the 
number of trimmed V nucleotides and number of trimmed J 
nucleotides for the set of 220 human rearranged TRGV-
TRGJ junction sequences.
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"true" (or more correctly, "bias-corrected": technically, it
is "true" only if the hypotheses of the first-order model
hold in general) process distribution. Indeed, for any k ≥
1 we find:

and for k = 0 we find:

We call this the (4/3, 1/3) rule. Supposing the first-order
hypotheses are correct, we would have for example that
the bias-corrected probability that 5 V nucleotides were
trimmed is equal to (4/3) the probability the tool "out-
put" gives 5 trimmed nucleotides minus (1/3) the proba-
bility it gives 6 trimmed nucleotides. We see indeed that
under these hypotheses, transformed fractions of data at
each data value above zero do not depend on the original
fraction of data at zero.

We remark that it is unlikely that the probabilities of
appearance of A, C, G and T nucleotides in the N region
are equal (= 1/4, as is assumed in the first-order model),
nor in the 3'V-REGION or 5'J-REGION. A second-order
model, giving much more freedom to possible A, C, G and
T frequencies (each frequency taking some value between
1/6 and 1/3) can be found in Supplementary Data [see
Additional file 1]. In brief, we find that the first-order
model approximates well the more general second-order
model. Thus for simplicity, the first-order result can be
used in the place of the second-order result to form
hypotheses on trimming processes.

Testing the transformed V and J trimming distributions
Under the hypotheses of the first-order model, we trans-
formed the TRA and TRG tool "output" data following the
law fF into probability distributions following the law fB.

Remarking that apart from at zero, these transformed
results often resembled Poisson laws, we attempted to for-
mally test this. More precisely, we supposed that we were
dealing with a Bernoulli process (with parameter p
unknown) followed by a Poisson process (parameter λ
unknown) if the Bernoulli process gave a success. This
meant a density function of:

Maximum likelihood was then performed in order to
simultaneously estimate the parameters p and λ, this

being necessary to subsequently test the hypothesis that
we are dealing with a two-step Bernoulli-Poisson process
having parameters p and λ.

Given data x1, x2,..., xn, it is easy to show that maximum
likelihood estimation gives the equations g(λ) = (1 - exp(-
λ))C - mλ = 0 and p = m/n(1 - exp(-λ)) to be solved, where
m is the number of xi > 0 and C the sum of the values of
the xi > 0. As m and C are thus constants given any dataset,
we see that resolving g(λ) = 0 for λ then allows us to solve
for p in the second equation. Upon performing the first-
order transformation, we found (m, C) = (517/3, 708),
(580/3, 3286/3), (152, 1682/3), (670/3, 4238/3) for the
TRAV, TRAJ, TRGV and TRGJ datasets, respectively.

To see that g(λ) = 0 has a unique solution (and thus p
also) here, we first remark that for each of these m, C > 0,
limλ→0 g'(λ) > 0 and g''(λ) < 0 for λ > 0, limλ→∞g'(λ) = -m
< 0, and g'(λ) is a continuous function for λ > 0. Thus, by
the intermediate value theorem, there exists at least one λ
> 0 such that g'(λ) = 0, and since g''(λ) < 0 for λ > 0, there
is in fact a unique solution, which can be easily found
numerically for each given m, C > 0. Indeed, we find (p, λ)
= (0.83, 4.04), (0.92, 5.65), (0.71, 3.59), (1, 6.31) for the
TRAV, TRAJ, TRGV and TRGJ datasets, respectively.

Figure 4 shows the transformed distributions (blue) and
the corresponding theoretical predictions (pink) for the
Bernoulli-Poisson distribution f in each of the four cases.
We tested the four empirical distributions against the the-
oretical Bernoulli-Poisson distribution f using Pearson's

χ2 test. The null hypothesis  is that the distribution

follows f with parameters (p, λ). In order to keep within
the assumptions of the test, the data were re-binned into
n = 8, 10, 8 and 9 bins for the TRAV, TRAJ, TRGV and TRGJ
trimming distributions, respectively. As shown in [28],

since the parameters (p, λ) were initially estimated using
maximum likelihood, the degree of freedom lies some-
where between n - 1 - r and n - 1, where r is the number of
parameters estimated using maximum likelihood. We
have thus that r = 2.

We found χ2 = 7.97, 11.93, 7.27 and 31.62 for the TRAV,
TRAJ, TRGV and TRGJ trimming distributions, respec-
tively. For TRAV, TRAJ and TRGV, we find that at all stand-
ard values of statistical significance (p = 0.05, 0.01, 0.005),
the null hypothesis is not rejected, and thus it is plausible
that the empirical results follow a Bernoulli-Poisson-type
law. However, for TRGJ, the null hypothesis is rejected at
all of the same values of statistical significance. Thus, as it
stands, the Bernoulli-Poisson law hypothesis would seem
unlikely for the TRGJ trimming process.
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Conclusion
Exploiting standardized "output" datasets of IMGT/V-
QUEST+JCTA, we have shown how to recover, under sev-
eral hypotheses, a representation of the probability distri-
butions of the "true" (or "bias-corrected") TRAV, TRAJ,
TRGV and TRGJ trimming processes.

We proceeded by constructing a simple first-order model,
known as the (4/3, 1/3) rule, followed by a second-order
model [see Additional file 1] which had more general
hypotheses. It it clear that the first-order model is a good
approximation to the second-order model. We then
showed that a kind of two-step Bernoulli-Poisson distri-
bution could plausibly explain the transformed TRAV,
TRAJ and TRGV trimming distributions.

We remark that for the TRA and TRG data available to us,
the first-order model is "close" to the original IMGT/V-
QUEST output data. This is partially due to the relatively
smoothly varying data distributions being only slightly
modified by performing the operation 4/3 P {F = k} - 1/
3 P {F = k + 1} (this would not necessarily be true for
more irregular probability distributions). An implication
of this, for biologists, is that when hypothesis testing on
TRA and TRG data sets, as long as the data is relatively
smoothly varying from one value to the next, there should
be no problem using the IMGT/V-QUEST+JCTA output
data, without transformation. Indeed, for our 4 data sets,
the same hypothesis tests gave the same statistical result
both on the IMGT/V-QUEST+JCTA output data as well as
the first-order transformed data.

Comparing "bias-corrected" distributions with Poisson distributionsFigure 4
Comparing "bias-corrected" distributions with Poisson distributions. First-order "bias-corrected" distributions for 
TRAV, TRAJ, TRGV and TRGJ compared with theoretical Poisson distributions.
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The statistical analysis of TR and IG junction sequences is
a very young field due to the need of having large, clean
datasets, unthought-of until recently. Since processes such
as the trimming process examined in this article are very
little understood from a physical point of view (i.e., what
is the exact series of events? By which enzyme is trimming
performed? How is exonuclease activity controlled [29]?),
we see this work as opening a window to making hypoth-
eses about the very nature of these physical processes and
eventually improve our understanding of the complex
molecular mechanisms of V-(D)-J recombination [30-33].
IMGT® standardized criteria will eventually enable dealing
with datasets numbering in the thousands or millions,
impossible to deal with by hand. Under this framework of
much larger datasets, we hope the present work will
inspire improved models that eventually allow a series of
specific, testable hypotheses to be made.

Methods
Datasets
T cell receptor (TR) genes were chosen for their absence of
somatic hypermutation (in contrast to the IG) [9,10].
Among TR, the TRA and TRG rearrangements were
selected because these loci have only two types of rear-
ranging genes, V and J, in contrast to the TRB and TRD
rearrangements which also have D genes [9]. The TRA
dataset consisted of 212 human rearranged TRAV-TRAJ
junction sequences, selected after alignment and analysis
by the integrated IMGT/V-QUEST+JCTA software [23-25]
and for which the output was agreed upon by experts (any
sequence with potential but not yet confirmed allelic pol-
ymorphisms or with some unusual characteristics in the
3'V-REGION or 5'J-REGION was not included in the data-
set). This same dataset was used in [12] to perform some
preliminary statistical analyses.

An identical methodology was used to collate a dataset of
220 human rearranged TRGV-TRGJ junction sequences.
Figures 2 and 3 show the IMGT/V-QUEST+JCTA output
for the 'number of trimmed V (and J) nucleotides' for TRA
and TRG, respectively.

Junction analysis
The methodology for the detailed analysis of the junction
is described in [25]. Briefly, IMGT/JunctionAnalysis [25]
uses the 3'V-REGION of the 'best' aligned germline V gene
and allele identified by IMGT/V-QUEST [23,24] to ana-
lyse the junction and delimit the 3' end of the 3'V-
REGION in the analysed sequence (checking as far as pos-
sible in the 3' direction until encountering a nucleotide
that is different from the germline 3'V-REGION, as by
default no mutation is allowed for TR). Then, IMGT/Junc-
tionAnalysis uses the 5'J-REGION of the 'best' aligned
germline J gene and allele identified by IMGT/V-QUEST to
delimit the 5' end of the 5'J-REGION in the analysed

sequence (checking as far as possible in the 5' direction
until encountering a nucleotide that is different from the
germline 5'J-REGION, as by default no mutation is
allowed for TR). The remaining nucleotides between the
post-trimming 3'V-REGION and post-trimming 5'J-
REGION nucleotides are denoted the N region (or if no
trimming has occurred, short nucleotide sequences
known as the P3'V-REGION or P5'J-REGION may be
present [34,35]). The variables used for statistical analyses
of TRA V-J junctions are described in [12]. The same vari-
ables were used for the TRG V-J junctions.
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