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The ultimate aim of the EU-funded ImmunoGrid project is to develop a natural-scale
model of the human immune system—that is, one that reflects both the diversity and
the relative proportions of the molecules and cells that comprise it—together with the

∗Author for correspondence (a.shepherd@mail.cryst.bbk.ac.uk).
†The authors of this paper belong to the ImmunoGrid Consortium.

One contribution of 13 to a Theme Issue ‘The virtual physiological human: computer simulation
for integrative biomedicine I’.

This journal is © 2010 The Royal Society2799

 on May 5, 2010rsta.royalsocietypublishing.orgDownloaded from 

mailto:a.shepherd@mail.cryst.bbk.ac.uk
http://rsta.royalsocietypublishing.org/


2800 M. Halling-Brown et al.

grid infrastructure necessary to apply this model to specific applications in the field
of immunology. These objectives present the ImmunoGrid Consortium with formidable
challenges in terms of complexity of the immune system, our partial understanding about
how the immune system works, the lack of reliable data and the scale of computational
resources required.

In this paper, we explain the key challenges and the approaches adopted to
overcome them. We also consider wider implications for the present ambitious plans
to develop natural-scale, integrated models of the human body that can make
contributions to personalized health care, such as the European Virtual Physiological
Human initiative.

Finally, we ask a key question: How long will it take us to resolve these challenges and
when can we expect to have fully functional models that will deliver health-care benefits
in the form of personalized care solutions and improved disease prevention?

Keywords: systems biology; agent-based simulation; immunoinformatics; Grid computing;
vaccine discovery

1. Introduction

The ImmunoGrid Consortium was funded by the European Commission in 2006
through the Framework 6 programme with the aim of developing a natural-
scale model of the human immune system together with the Grid infrastructure
necessary to apply this model to specific applications in the field of immunology
(Pappalardo et al. 2009). The Consortium brings together researchers from several
countries (Denmark, France, Italy, the UK and Australia) with expertise in the
areas of immunoinformatics, Grid technologies and experimental models of cancer
immunotherapy.

From its inception, it was clear that the Consortium would face formidable
challenges. The immune system is a biological system of extreme complexity,
there is a lack of reliable data about many of its constituent cells and molecules,
and any simulation that aims to model the immune system at a natural scale will
inevitably require substantial computational resources. Arguably, ImmunoGrid
has the task of modelling one of the most challenging components of the Virtual
Physiological Human (VPH).1 In this paper, we explain the key challenges
faced by the ImmunoGrid Consortium and the approaches we are adopting to
overcome them.

Ultimately, the wider challenges of modelling the human immune system
are shared with the current ambitious plans to develop an integrated natural-
scale model of the human body. This framework comprises a set of models
integrated within the VPH that are aimed to be descriptive, integrative and
predictive (Fenner et al. 2008). Observations from nature, clinics and experiments
are collected, catalogued, organized, combined and shared through the VPH
framework, allowing descriptions of the systems, processes and entities of
the human organism to be formulated. The VPH framework allows multiple
observations to be integrated and analysed collaboratively, be they experts from
multiple fields enabling postulation of systemic hypotheses and testing them.
1http://www.vph-noe.eu/
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Finally, it allows the interconnection of predictive models that are defined at
multiple scales (molecules, cells, tissues and organs, body-wide systems, the whole
organism, and collection of organisms) into systemic networks. These networks
can address systemic hypotheses and can help validate the hypotheses by
combining predictive modelling, clinical observations and experimentation. The
VPH is currently developed through several initiatives, including the European
VPH (Fenner et al. 2008), and these are expected to enable an integrative and
analytical approach to the study of medicine and physiology and to drive the
paradigm shift in health care. The key benefits that the VPH aims to deliver
are: a holistic approach to medicine, personalized care solutions, a reduced
need for animal experiments and a preventative approach to the treatment of
disease. Models of the immune system and immune responses provide key links
for the study of human disease (including infectious disease, cancer, allergy
and autoimmunity) as well as medical interventions such as immunotherapy,
vaccination, transplantation and others.

2. The human immune system

In the whole of biology, the immune system is arguably second only to the central
nervous system in terms of complexity and our knowledge about how it works,
while expanding rapidly, remains incomplete.

Even a concise description of the immune system lies outside the scope of this
paper and the reader requiring further information is referred to an introductory
book, such as Janeway’s immunobiology (Murphy et al. 2008). Here, we list the
main points that summarize the complexities of the immune system:

— Systemic complexity. One essential function of the immune system is to
destroy invading infectious agents. These agents gain access to the body
through wounds and lesions, or through the respiratory, gastrointestinal
and urogenital tracts, where they first encounter the mucosal immune
system and where most pathogens are usually quickly destroyed before
they can cause clinical symptoms. If this defence is penetrated, pathogens
meet the systemic immune system whose organs, such as the thymus,
spleen and lymph nodes, are linked by the vascular and lymphatic systems.
Cells of the immune system (and among them the B and T cells that are
specific to the adaptive immune system of vertebrates) are derived from
stem cells in the bone marrow, and plasma cells (which differentiate from B
cells having recognized an antigen) return to the bone marrow to produce
antibodies. Antigen recognition and proliferation of reactive T and B cells
takes place in specialized areas of the spleen and in more than 500 lymph
nodes distributed throughout the body.

— Complexities of scale. The human immune system is hierarchical
and operates at molecular, cellular, organ/tissue, organism and group
of organism levels. For example, at the molecular level, major
histocompatibility complex (MHC) proteins that present on the cell surface
peptides cleaved from antigen proteins are integral to the process of antigen
recognition by cytotoxic and helper T cells, whereas soluble cytokines are
crucial for intercellular signalling. At the cellular level, cytotoxic T cells
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contribute to the neutralization of intracellular pathogens and potential
cancers by eliminating the infected or malfunctioning cells, whereas plasma
cells derived from B cells contribute to the neutralization of extracellular
pathogens through the production of antibodies. At the organ level,
the thymus has an essential role in the maturation of T cells and the
elimination of self-reactive T cells, while the lymphatic system provides an
essential mechanism for transporting immune response cells and molecules
to sites of infection.

— Spatial complexities. The immune system is highly distributed, involving
signalling and diffusion of cells and molecules throughout the body. There
is no centralized control; rather, the response to a given infection emerges
from the combined actions of vast numbers of molecules and cells. The
location and extent of a given infection or cancerous growth are factors
that are relevant to an individual’s prognosis; hence, a uniform model
for the whole human body would not capture important aspects of
observed behaviour.

— Diversity of molecular and cellular entities. Variability of gene and protein
sequence presents considerable challenges to natural-scale modelling of
immune responses. Each individual has a unique repertoire of molecular
entities such as antigen receptors, immunoglobulins (Igs) on the surface of
B cells or secreted by the plasma cells, and T cell receptors (TCRs) on the
surface of T cells, together with the polymorphic MHC (in humans, human
leucocyte antigen, HLA) proteins. The repertoire of antigen receptors
within a given individual changes constantly and the immune profile
varies over that person’s lifetime, predominantly as a response to his/her
interactions with the environment (e.g. the micro-organisms encountered,
the immunizations undergone). Each individual will exhibit approximately
4 × 1012 different B and T cell antigen receptors produced by somatic gene
rearrangements, mechanisms of junctional diversity and, for the Ig, somatic
hypermutations (that are unique features of the adaptive immune system).
Furthermore, MHC genetic polymorphism gives rise to (as one example)
more than 1500 different class I alleles in the human population (Sette
et al. 2005), which means that, depending on their haplotypes, individuals
will differ in the presentation of antigenic peptides. It can be possible
to use subsets to model natural-scale populations of cells or molecules in
an efficient and effective way; for example, Smith et al. (1998) performed
realistic simulations of B and T cell populations using subsets of less than
0.001 per cent of the total repertoire. However, not all scenarios allow this
simplification: approximations are particularly difficult to apply to rapidly
evolving systems, such as the HIV (Castiglione et al. 2004) and influenza
A viruses (Handel et al. 2009) under selective pressure from the immune
system. A further layer of complexity comes from the differentiation of
specialized cell subsets, such as helper, cytotoxic, regulatory (suppressive)
and memory T cells, with novel functions and new cell subsets constantly
being added by advanced research.

— Temporal complexities. The immune system operates on a wide range of
time scales, ranging from seconds (to take account of intracellular signal
transduction after receptor engagement, for example) to years (the effects
of memory cells on repeat infections).
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It is worth noting that, in terms of the disparate spatial and temporal
scales, the immune system presents approximately the same order of modelling
challenges as those associated with the human body as a whole.

3. Modelling the immune system

A significant number of tools and simulators have been developed for predicting
aspects of the adaptive immune system, although much less attention has been
paid to modelling innate immunity. Various tools have been developed for
predicting key molecular aspects of adaptive immunity, notably T cell and B
cell epitopes, proteasomal cleavage and peptide binding to TAP (the transporter
associated with antigen processing), from protein sequences—see Lundegaard
et al. (2007) for a useful summary. The prediction of class I T-cell epitopes
has proved particularly successful, with the tools developed at the Center for
Biological Sequence Analysis (CBS) in Denmark (Larsen et al. 2005) proving to
be the most accurate in a recent independent evaluation (Lin et al. 2008).

Although, as we shall see, such molecular tools can make a useful contribution
to large-scale simulation of the immune system, they do not attempt to capture
the dynamics of the immune system as a whole. As Louzoun (2007) points
out in an interesting paper about the evolution of mathematical modelling
in the field of immunology, there has been a significant shift in the types
and scope of mathematical models of immune systems over the past decade,
with interest moving increasingly from classical mathematical models based
primarily on ordinary differential equations (ODEs) to other paradigms, including
Monte Carlo simulations. Agent-based models, of which those developed through
ImmunoGrid are examples, are becoming more popular (Bauer et al. 2009). These
are stochastic models that describe populations of interacting agents, such as
the molecules and cells of the immune system, using a system of simple rules.
However, modelling the immune system is still more or less in its infancy; all
models of the immune system, including our own, are relatively primitive. For
a recent concise review of computational models of the immune system, see
Pappalardo et al. (2008b); for a comparison of agent-based models with ODEs,
as applied to the specific problem of the optimization of vaccine protocols, see
Pappalardo et al. (2010).

On the ImmunoGrid project, we have developed two core immune system
simulators—one a revised version of C-IMMSIM, the other SIMTRIPLEX—with
a common code base derived from the original C-IMMSIM (Castiglione et al.
1997). Both simulators use lattice-gas cellular automata (LGCA) as their
core mathematical approach, a model originally developed for immune system
simulation by Celada & Seiden (1992). Each lattice position may contain multiple
agents (representing different types of cells or molecules) that interact with each
other probabilistically. Each interaction phase alternates with a diffusion phase
that allows the agents to move across the lattice. As part of the ImmunoGrid
project, various refinements have been undertaken, including (Pappalardo et al.
2008a): physical models of tumour growth based on nutrient or oxygen starvation
(using the lattice Boltzmann method (He & Luo 1997)); three-dimensional lattice
models of lymph nodes (Baldazzi et al. 2009); and a model of chemotaxis that
uses partial differential equations (PDEs).
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Such an agent-based approach has several potential advantages. By directly
representing individual agents, we are able to model the life history of individual
cells, rather than merely their average behaviour. LGCA simulations are
inherently stochastic, in terms of both the initial state of the simulator and the
interactions that take place at a given time step. Hence, it is possible to model the
distribution of behaviours within a population of identical individuals, or to assess
the multiple possible outcomes for a single individual given a particular infection
or disease scenario. For non-specialists, the behaviour of an LGCA simulation is
also much more intuitive than that of an equation-based model. Finally, LGCA
simulators are easily extensible; new cell types or new states for an existing cell
type can easily be added. This is particularly appealing in the context of immune
system simulation, where the critical issue is what level of detail is necessary for
the simulator to exhibit realistic behaviour.

C-IMMSIM has been used to model HIV infection (Baldazzi et al. 2006;
Castiglione et al. 2007b), Epstein–Barr virus infection (Castiglione et al. 2007a),
and cancer immunotherapy (Castiglione et al. 2005). SIMTRIPLEX has been used
to model immunoprevention vaccines (Motta et al. 2005; Pappalardo et al. 2005,
2006; Lollini et al. 2006) and atherosclerosis (Pappalardo et al. 2008a). Rather
than describe the work covered in the preceding papers, here we will consider the
modelling and computational challenges that we have faced.

The ultimate goal of ImmunoGrid is to develop a natural-scale model of the
immune system. By natural scale we mean a model that captures both the
diversity of the immunological (cellular and molecular) repertoire and the scale
of the natural immune system, most notably in terms of the true population of
its cellular components. Capturing the diversity of the immunological repertoire
is necessary both to study the immune response of diseases such as influenza
A that are subject to continuous mutation, and to understand the diversity of
responses among different individuals within a population. Modelling the scale
of the real immune system may be necessary to capture some of its emergent
properties. In a recent paper, Chavali et al. (2008) suggest that the ability of
agent-based models and cellular automata to display emergent behaviour makes
them particularly appropriate for modelling immunological processes. Developing
a model that captures both the diversity and scale of the immune system has not,
as far as we are aware, been attempted before.

4. Descriptive versus predictive models

There is a fundamental distinction between descriptive models and predictive
models. The descriptive model of a system is designed to characterize its nature
in a way that is consistent with its known behaviour, whereas the predictive
model aims to predict its future behaviour. Intuitively, it is much easier to design
a descriptive model than a predictive one. Major obstacles to the development
of both types of model include lack of available data about the components
of the system and how they behave over time, and lack of knowledge of how
the various components of the system interact; the bar is higher for predictive
models than descriptive ones. Different models, both descriptive and predictive,
require different quantities of data. How much data is required depends in part
on how sensitive the system is to its state at a given time. Indeed, for chaotic
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systems there are theoretical limits to what may be predicted however much data
is available. For example, accurate weather forecasting beyond a relatively modest
limit of a few weeks is considered impossible in theory owing to the chaotic nature
of the Earth’s atmosphere (Sneyers 1997).

The extent to which the immune system is predictable remains an open
question. What is clear is that the development of predictive models of the
immune system is exceedingly challenging given the relative paucity of some
types of available data. Given the combinatorial nature of the human immune
system, large number of cell types, and variability of pathogens, experimentally
obtained immunological data represent only a tiny fraction of possible situations.
To date, the ImmunoGrid Consortium has developed descriptive models of HIV
infection, Epstein–Barr virus infection and cancer immunotherapy using the
generic C-IMMSIM simulator; and predictive models of an immunopreventive
vaccine using the SIMTRIPLEX simulator. It is the latter that we will discuss here,
as it gives us insights into the challenges faced by the VPH initiative regarding the
development of predictive models that will ultimately be useful in the treatment
of human patients.

The SIMTRIPLEX simulator was developed to predict the effects of different
vaccination schedules for the Triplex vaccine, which had previously been shown
to prevent the onset of highly aggressive mammary carcinomas in HER-2/neu
transgenic mice when applied chronically (one intraperitoneal vaccination every
3–4 days for two weeks followed by two weeks of rest starting at six weeks of
age and continuing for the entire duration of the experiment) (Lollini et al.
2005). Given a range of vaccination schedules to evaluate, the aim was to use
the simulator to identify one that required significantly fewer injections than the
chronic schedule but which nevertheless produced a high survival rate (Lollini
et al. 2006; Pappalardo et al. 2006). The behaviour predicted by the SIMTRIPLEX
simulator has recently been validated experimentally by the Lollini group (one of
the ImmunoGrid partners) using a small population of mice.

Evaluation of the outcome of the in vivo experiment is still ongoing, although
a significant level of agreement between predictions and experiment has been
demonstrated for the first 52 weeks. However, there are several important
characteristics of this approach that we believe have wider implications:

— The use of a model organism. SIMTRIPLEX simulates the immune system of
mice, rather than humans. Although the development of human simulators
is our ultimate goal, the kind of validation experiment that was undertaken
would not have been possible with human subjects, as it is currently
impracticable (as well as perhaps unethical) to validate a simulator
by testing vaccine schedules on large populations of cancer patients.
Furthermore, animal (particularly rodent) models are regularly used in
vaccine design, and immune protection in appropriate animal models has
been used as a proxy for a human immune response in preparing a dataset
of vaccine antigens for testing computational models (Mayers et al. 2003).
During the development phase, the use of a model organism has been
invaluable. Yet, there remains a crucial issue: How relevant are results
from mouse experiments to the future development of human therapies?
This is a difficult question to answer and one that is likely to remain
controversial for a long time.
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— The limited feedback provided by small-scale experiments. The amount and
range of data collected during the in vivo experiment, though extremely
valuable, were relatively modest. This is because it is very costly and
time-consuming to run large numbers of such experiments with large
populations of mice. In order to provide measurements of the state of the
immune system that are both detailed and accurate, it would inevitably
be necessary for many mice to be killed before the end of the experiment.
Hence in vivo experiments that aim to validate in silico models are
often expensive and difficult to design. One further consequence of the
experiment’s modest scale is that the amount of noise in the data generated
is relatively high, which inevitably makes the subsequent assessment of
simulator accuracy less precise.

— The time-consuming nature of in vivo experiments. In vivo experiments
typically take much longer to run than in silico ones; indeed, this is one
motivation for the development of accurate in silico models. In the case
of the SIMTRIPLEX validation experiment, this ran for over a year, and
significant additional time was required to plan and set up the experiment.
An obvious consequence is that the iterative loop of model refinement is a
long one.

Bearing these factors in mind, it is clear that the refinement of our models is a
long-term enterprise, which will require a combination of modelling, experimental
validation and model refinement in incremental fashion.

Another important point to note is that the SIMTRIPLEX simulator is designed
to address a single disease scenario, with specific disease-related enhancements to
the C-IMMSIM simulator upon which it was based. These include the addition of
new cell types (cancer cells and vaccine cells) and molecules (tumour-associated
antigens, interleukin 12 (IL-12) and allogenic MHC-I (alloMHC-I)) (Motta et al.
2005; Pappalardo et al. 2005). Ultimately, the reason why ImmunoGrid is not
attempting to develop a single, generic simulator is a pragmatic one and relates
to the computational issues addressed below. Different disease-related scenarios
require contrasting aspects of the immune system to be modelled in greater or
lesser detail. (For example, modelling tumour growth is integral to our work with
the SIMTRIPLEX simulator, but irrelevant in most other contexts.) Hence, the
scope for simplification is inevitably higher if a model addresses a single disease
rather than all aspects of the immune system simultaneously.

5. Computational challenges and solutions

From a computational perspective, the ImmunoGrid simulators require significant
and increasing resources. Indeed, the availability of computational resources is
arguably as significant a limiting factor on what we are able to achieve as the
lack of accurate data about the state of the immune system under a significant
range of conditions. A rough calculation of the potential requirements of a
notional ‘full-complexity model’ of the human immune system makes it clear
that such a model is infeasible to run, both currently and for the foreseeable
future. Take, for example, the simulation of interactions between peptides and
MHC molecules; using NAMD (NAnoscale Molecular Dynamics) ABF (Adaptive
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Biasing Force) software (Darve & Pohorille 2001), it takes approximately 2 h to
simulate a single peptide–MHC interaction (which in reality lasts for fractions of
a second) using an eight-node computer cluster; yet, millions of such interactions
are occurring within a single individual at any given time. In contrast, a single
prediction of MHC binding from peptide sequence takes a fraction of a second.
Consequently, gross simplification is an inevitable characteristic of any current
immune system simulator.

In this section, we address two points: the pragmatic choices we have made
about simplifying our model in order to limit the computational costs of running
our simulators; and the Grid framework we have developed to maximize the
resources available to run them.

(a) Minimizing the computational costs of our model

The single most important contribution to reducing the computational costs
of our simulators comes from simplification. Indeed, arguably this is one of the
points of doing modelling; only in the worst-case scenario does a model have to be
as complex as the reality it describes. Ultimately, we gain important insights by
understanding what level of detail is essential for a model to behave in a realistic
way (descriptive modelling) or to anticipate the behaviour of the real system with
a high level of accuracy (predictive modelling).

Decisions about what to simplify are driven by a combination of necessity
and intuition. The key simplifications that have been made in the ImmunoGrid
simulators are: the discretization of time and space; the use of binary strings to
represent peptides (thereby ignoring their three-dimensional structure); modelling
the concentration of molecules (notably antigens, antibodies and cytokines),
rather than representing them individually; not simulating processes that occur
within cells (transport, cleavage, presentation); and ignoring certain entities
completely (for example, not all the simulators model natural killer cells). With
respect to time, space and the size of the molecular repertoire (as defined
by the length of the binary strings), user-defined parameters determine the
complexity of the simulator’s underlying model during a given run. A hybrid
approach in which agent-based cellular models were successfully combined
with linear representations of molecular concentrations has been developed by
Guo et al. (2008).

The extent to which the simplifications used in the ImmunoGrid simulators
are consistent with effective descriptive and/or predictive models largely
remains an open question. However, to date many gross behaviours of the
human immune system have been successfully replicated (C-IMMSIM), and (as
discussed above) there has been some success in predicting the development of
mammary carcinoma in genetically susceptible mice treated according to different
immunopreventive vaccination protocols (SIMTRIPLEX).

A second way in which we have reduced the computational cost of simulations
at run-time is by precalculating key interactions between peptides and T cells
using the tools developed at CBS (Larsen et al. 2005). This approach is feasible
for many bacterial and viral infections, but is problematic for species such as HIV
that are associated with long-term diseases and that rely on mutation as a way of
circumventing the immune system. In the latter case, it is not obvious in advance
what set of peptides will be involved in binding.
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(b) Maximizing available resources

Several parallelized versions of the ImmunoGrid simulators have been
produced, allowing them to run efficiently on multiprocessor machines and
clusters. However, parallelization only addresses the computational requirements
of individual simulations; when considering the broader requirements of the
ImmunoGrid project, it is important to bear in mind that, in practice, we need
to run very large numbers of simulations—thousands (at least) of simulations to
scratch the surface of the simulator’s parameter space during the development
phase, and large numbers of simulations to examine how different individuals
respond to a given clinical scenario. Broadly, we can define the computational
requirements of ImmunoGrid as follows:

— To enable the most complex single simulations to be run, requiring access
to a large cluster or supercomputer.

— To enable large sets of immune system simulations and epitope predictions
to be carried out (to explore the parameter space of the simulators and to
investigate the effects of clinical scenarios on multiple individuals).

— To support small-scale simulations, including runs of the ImmunoGrid
educational simulators, for which standard workstations are sufficient.

As foreseen, when the project name was chosen, no single partner of
ImmunoGrid could guarantee access to sufficient resources to meet these
requirements. Hence, a Grid-based solution was a practical necessity. Neither
could we guarantee uninterrupted access to one of the national or international
production-quality Grids, such as the UK National Grid Service2 (NGS). As
a consequence, the development of our own Consortium Grid was the only
practical solution.

A detailed description of our Grid-based solution is presented elsewhere
(Halling-Brown et al. 2008). Here we focus on its main characteristics and their
wider relevance for systems biology simulations.

— Our Grid maximized the range of resources that can be used, including:
desktop personal computers; local clusters and supercomputers at a single
institution; and national and international Grid services, including the UK
National Grid Service, the European supercomputer Grid DEISA3 and the
US TeraGrid.4

— Both developers and users are insulated from the complexities of the
underlying middleware. This simplicity is vital, as individuals and
organizations that have resources that could potentially be incorporated
into the Grid will be deterred from doing so unless the addition of a new
Grid node is as easy as possible.

— Our framework also allows resources to be accessed as Web services.
A Web service provides an Application Programming Interface (API)
that enables users to integrate a remotely hosted service seamlessly
with other components of the applications they are developing. This

2National Grid Service; http://www.grid-support.ac.uk/
3Distributed European Infrastructure for Supercomputing Applications; http://www.deisa.eu/
4TeraGrid; http://www.teragrid.org/
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approach is becoming increasingly popular in the field of bioinformatics,
with many core services provided by organizations such as the European
Bioinformatics Institute5 already being made available as Web services. For
ImmunoGrid, instances of our simulators can be wrapped as Web services,
deployed on a local machine and accessed via the Grid framework.

— A Web interface is built on top of the upper middleware. This hides the
underlying complexity from the user, who (given relevant permissions) can
run multiple simulations on diverse computational resources at various
widely distributed sites in a completely transparent way.

— Given a set of available resources linked by the ImmunoGrid framework,
specific resources are selected automatically by a simple job broker (by
default), or manually (if so desired by the user).

The hallmarks of our framework are its flexibility, ease of installation and ease
of use. Ultimately, we believe that our solution represents an effective compromise
for a single, large project. Many of the characteristics of ImmunoGrid are shared
by other systems biology projects: the involvement of multiple international
partners (each bringing their own computational resources to the project); the
need to run large numbers of computations, both large and small; and the need
to provide an easy-to-use interface for a relatively non-technical user base. From
this perspective, our approach can be viewed as a case study that demonstrates
the relevance and effectiveness of our flexible, robust but sub-optimal solution to
a much wider range of biological projects.

But what about integrating multiple biological simulators, where inter-
communication between the distributed components at run-time is a fundamental
requirement? This is what is proposed by the VPH initiative, and it presents a
different order of challenge altogether.

6. Towards an integrated VPH

The fundamental aim of the EU VPH initiative, as stated in the final version
of the VPH Roadmap6 published in 2007, is to develop a ‘methodological and
technological framework’ that will enable the development of quantitative models
that are predictive and can describe human life from genes to whole organism.

A key motivation is the belief that, to develop effective therapies or preventive
strategies that address complex pathologies, it is necessary to consider the human
body as a single integrated system. The VPH Roadmap explicitly recognizes
the ambitious, long-term goal of the initiative; it argues that, given sufficient
resources, the framework can be developed ‘over the next 10 years’. However, it
acknowledges that a total model of a human being is unrealizable technically
and may be, in principle, unrealizable, as the only complete model is the
organism itself.

Although we broadly agree with this assessment, the latter point is arguably
somewhat over-stated; as we have already argued, it is only in the worst-case
scenario that a model has to be as complex as the reality it describes. Rather, the
5EBI; http://www.ebi.ac.uk
6STEP Consortium. Seeding the EuroPhysiome: a roadmap to the virtual physiological human
[online 5 July 2007], http://www.europhysiome.org/roadmap
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aim the VPH Roadmap is to develop ‘a realistic logical structure likely to enable
practical results within a reasonably short time scale and that will remain flexible
and open to continual revision, extension and collaboration on a worldwide scale’.

With respect to predictive models, the aim of the VPH is to enable the
interconnection of predictive models that may be on different scales in order
to be able to test more systemic hypotheses. A key issue, then, is how separately
developed simulators of individual subsystems (such as the immune system and
the heart) can be integrated. The challenge here is substantial owing to the
diversity of the different models currently being developed. This diversity can
be characterized in several ways:

— Diversity of modelling paradigms. The VPH Roadmap lists a range of
simulation techniques that are (or may be) used to simulate different
subsystems of the human body, including: ODEs and PDEs; discrete
methods (such as cellular automata); hybrid methods (such as the
combination of LGCA and PDEs used in the ImmunoGrid simulators);
hierarchical models (with different levels of representation for global and
local behaviours); and biostatistical models (such as those combining
pharmacokinetics and pharmacodynamics).

— Diversity of concepts and nomenclature. Many biological subsystems
have their own specialist concepts and nomenclature. For example, key
molecules of the immune adaptive system (such as Igs, TCRs and
the MHC) have distinctive sequence and structural characteristics not
shared by other biomolecules. These characteristics can be described
using IMGT-ONTOLOGY (Giudicelli & Lefranc 1999; Lefranc et al.
2004; Duroux et al. 2008) and captured in IMGT, the international
ImMunoGeneTics information system developed by Lefranc et al. (2008,
2009), who are key partners in the ImmunoGrid Consortium. The concepts
and nomenclature of IMGT-ONTOLOGY have been widely adopted and
form the basis of international standards (such as those for monoclonal
antibody definitions developed by the WHO International Nonproprietary
Names (INN) Programme). However, only a limited mapping of IMGT-
ONTOLOGY concepts to more generalized ontological resources such as
the Gene Ontology (GO) (Gene Ontology Consortium 2006) has been
possible. Given that manual mappings between specialized ontologies
require a very significant input from domain experts, much current effort is
being put into the development of automated mapping systems, although
the coverage and accuracy of such systems when applied to biomedical
ontologies is often rather poor—for the results of a recent evaluation see
Euzenat et al. (2007).

— Diversity of resolutions. Different models are being developed with
contrasting spatial and temporal resolutions. For example, not all
subsystems require the same level of granularity with respect to the
modelling of cells—indeed, for some subsystems it may not be necessary
to model individual cells at all.

Some of this diversity is both inevitable and desirable. Different subsystems of
the human physiome are fundamentally different in terms of their structure and
function, and it seems reasonable that each should be modelled on its own merits.
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It has already been argued that a model should be as simple as is consistent with
the aim of descriptive or predictive accuracy.

However, this diversity presents the VPH with one of its most daunting
challenges—how to ensure effective intercommunication between contrasting
models. The VPH Roadmap argues that this will ‘necessitate the development of
software tools to facilitate model coupling’, but this work is as yet in its infancy.
To make this work tractable, a loose coupling between components is arguably
the only practical option. A given pair of components would communicate with
each other via a well-defined interface that hides their respective modes of
implementation. Given the diversity of models (outlined above) and the apparent
lack of adherence to data and model interchange standards, even this apparently
tractable approach to model integration poses significant challenges. It is worth
noting here that, although the ImmunoGrid simulators do adhere to the IMGT
data standards mentioned above, they do not currently employ any of the mark-
up languages, such as CellML (Lloyd et al. 2004) and SBML (Hucka et al. 2003),
advocated by the VPH Roadmap. In the long term, use of common mark-up, as
well as common and widely accepted nomenclatures and ontologies, may be an
essential prerequisite for the smooth interchange of data between models, however
loosely coupled. Bauer et al. (2009) cite the potential heterogeneity of description
and coding as one of the disadvantages of agent-based models, suggesting that
it may be particularly important to maintain common mark-up and standards
where this type of modelling is involved. Moreover, the computational resources
that will be necessary to ensure effective intercommunication between distributed
subsystem simulations at run-time are as yet unclear, but represent a potentially
huge challenge.

But perhaps a more fundamental question is whether this loosely coupled
approach is feasible in practice. Arguably, one of the key rationales for the
development of the VPH, as stated in the VPH Roadmap, suggests that we should
not expect the loosely coupled approach to take us very far because living things
themselves are closely coupled.

To briefly explore this point further, let us consider a single scenario, where an
immune system simulator is coupled with a model of the heart7 (Bassingthwaighte
et al. 2009; Niederer et al. 2009)—arguably, the most successful model in the whole
of human systems biology—in order to simulate how an infection may affect the
behaviour of this organ. In this scenario, the heart modellers would at the very
least wish to know what concentration of antigens, antibodies and lymphocytes
enter the heart (in fact, they may wish to have additional information about how
these entities will interact with the cells in the heart). For the immune system
simulator to be able to predict the concentration of those entities it would need to
incorporate not only a model of lymphoid tissue (where lymphocytes are activated
and antibodies created, and which is conventionally regarded as being within the
remit of immune system modellers), but also a model of the cardiovascular system
(or integrated but separate models of the heart and vascular systems).

This suggests, at the very least, a complex interplay between two or more
models, with a combined ‘super-model’ that is significantly more complex than
any of its individual components and that would require separate validation.
But the situation is, in fact, more challenging than this description suggests. In

7The Wellcome Trust Heart Physiome Project; http://heart.physiomeproject.org/index.html
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this scenario, the cardiovascular system has become part of the spatial context
in which the immune system entities need to interact; the immune system and
cardiovascular systems are not loosely coupled. In one sense, also, the innate
and adaptive immune systems can be seen as being distinctive but tightly
coupled, and, therefore, a complete immune system model being itself a ‘super-
model’ requiring separate validation. Techniques developed for coupling models
of different immune components should prove invaluable in the more challenging
task of coupling an immune system model to models of other organs, including
the heart.

7. Conclusion

The extent to which it will be possible for the VPH and related initiatives to meet
the challenges discussed in this paper within the next decade remains an open
question, but clearly there is a long way to go. In many respects, the modelling
and computational challenges that are being faced by the VPH are exemplified by
the immune system, which through its multiple subsystems and its complexities
of scale and time encapsulates some of the most daunting obstacles within a single
project. The ImmunoGrid project has made some important advances, but it is
also making an important contribution by providing a reality check for some of
the less realistic expectations of the wider systems biology community. Models of
the immune system represent a convenient benchmark because of the nature of
immunity: the immune system interacts intimately with all other systems in the
human body. To its credit, the VPH Roadmap, although a visionary document,
does not shy away from the scale of challenges that will be faced in the years
to come.

So a final question may be posed: Given the scale of the complexities we are
facing, when will we be able to provide a satisfactory solution? Again, the VPH
Roadmap makes the important point that modelling efforts should be focused on
what can have immediate impact and this will often require simplified models.

The need to develop effective educational tools is a recurrent theme in
the VPH Roadmap, and the development of educational simulators and tools
is an important role of the ImmunoGrid project. At the time of writing,
four educational simulators can be run from the ImmunoGrid educational
portal8 covering the topics of cancer vaccine scheduling, antigen processing
and presentation, bacterial replication rates and atherogenesis. It is planned to
expand this work in the near future to cover the analysis of T cell epitopes
and immunological hot-spots, tumour growth and tumour regression. Each of
the simulator-based educational tools is deliberately simplified, with a strong
emphasis on visualization. For example, graphs are used to track the population
of core cellular and molecular entities (T cells, B cells, cancer cells, antibodies,
etc.) over time for each predefined clinical scenario. The graphs are updated
in real time as the simulator is run. Movies showing the growth of cancer
cells treated with the vaccination protocols simulated in SIMTRIPLEX are also
made available as relatively small (approx. 1 Mb) and tractable .mpeg files. In
this context, the available settings of the simulator are deliberately limited to
ensure that the computational requirements are comparatively modest (thereby
8ImmunoGrid educational portal; http://igrid-ext.cryst.bbk.ac.uk/immunogrid/site/education.php
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allowing us to offer open public access to this resource), and the clinical outcomes
provide reasonable estimates in terms of, for example, the relative longevity of
different patients.

Ultimately, the immune system exemplifies within a single biological subsystem
many of the wider challenges that will be faced by the VPH over the next
decade. We believe that immune system modelling provides researchers with the
opportunity to explore and address many of the difficulties, both conceptual and
practical, that will be critical to the future of integrated, multiscale modelling
of the human physiology. The findings from the ImmunoGrid project, however
partial, are therefore likely to feed into more extensive, precise or complete models
of human organs and systems during the VPH project lifetime. We conclude this
paper with a final positive note. For years computational power has been doubling
every 18 months, and our ability to make use of these resources is growing steadily
(albeit at a slower rate). This growth is our best guarantee that a complete virtual
model of human physiology and its constituent systems, such as the immune
system, are a not-too-distant reality.

The authors of this paper belong to the ImmunoGrid Consortium. The ImmunoGrid project has
been funded by the EC contract FP6-2004-IST-4, No. 028069.
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